HOME   Cart(1)   Quotation   About-Us Tax PDFs Standard-List
Powered by Google-Search & Google-Books www.ChineseStandard.net Database: 189760 (2 Jul 2022)

GB/T 4976-2017 (GB/T4976-2017)

Standard IDContents [version]USDSTEP2[PDF] delivered inName of Chinese StandardStatus
GB/T 4976-2017English135 Add to Cart 0--3 minutes. Auto-delivery. Compressors -- Classification Valid


GB/T 4976-2017: PDF in English (GBT 4976-2017)
GB/T 4976-2017
GB
NATIONAL STANDARD OF THE
PEOPLE’S REPUBLIC OF CHINA
ICS 23.140
J 72
Replacing GB/T 4976-1985
Compressors - Classification
(ISO 5390.1977, MOD)
ISSUED ON. MAY 12, 2017
IMPLEMENTED ON. DECEMBER 01, 2017
Issued by. General Administration of Quality Supervision, Inspection and
Quarantine;
Standardization Administration of PRC.
Table of Contents
Foreword ... 3
1 Scope ... 5
2 General Classification ... 5
3 Classification Instructions ... 5
Appendix A (Informative) CHINESE--English Comparison and Simplified
Diagram for Partial Types of Compressors ... 8
Appendix B (Informative) Technical Differences and Causes between this
Standard and ISO 5390.1977 ... 11
Foreword
This Standard was drafted as per the rules specified in GB/T 1.1-2009.
This Standard replaced GB/T 4976-1985 Compressors – Classification. Compared
with GB/T 4976-1985, this Standard has the major technical differences as follows
besides the editorial modifications.
--- Add partial compressor types to the general classification (see Figure 1 of this
Edition; Figure 1 of 1985 Edition);
--- Add 12 items of classification instructions for the compressors (see 3.2, 3.4~3.7,
3.9~3.15 of this Edition);
--- Modify the classification instructions for positive-displacement compressor (see
3.1 of this Edition; 3.1 of 1985 Edition);
--- Modify the classification instructions for axle-driven compressor (see 3.3 of this
Edition; 3.1.1 of 1985 Edition);
--- Modify the classification instructions for rotary compressor (see 3.8 of this Edition;
3.1.2 of 1985 Edition);
--- Modify the classification instructions for dynamic compressor (see 3.16 of this
Edition; 3.2 of 1985 Edition);
--- Modify the classification instructions for axial flow compressor (see 3.18 of this
Edition; 3.2.1.1 of 1985 Edition);
--- Modify the classification instructions for centrifugal compressor (see 3.19 of this
Edition; 3.2.1.2 of 1985 Edition);
--- Modify the classification instructions for ejector (see 3.20 of this Edition; 3.2.2 of
1985 Edition).
This Standard adopts re-drafting method to modify and use ISO 5390.1977
Compressors – Classification.
Compared with ISO 5390.1977, this Standard has the technical differences; the clause
and sub-clause involved in these technical differences have been marked by the
vertical single line (|) at the outer margin; Appendix B gives the table listed the
corresponding technical differences and its causes.
This Standard also makes the following editorial changes.
a) Modify term in A.1 “Crankshaft reciprocating piston compressor”, which is
replaced by a briefer one of “Piston compressor”;
NOTE. Compression can be divided into internal and external compression. The pressure of
internal compression can be further divided into the fixed and changeable ones.
3.2 Reciprocating compressor. positive-displacement compressor that improves the
gas pressure through compressing gas by the reciprocation motion of the piston in the
cylinder or repeated deformation of the diaphragm in the cylinder.
3.3 Axle-driven compressor. reciprocating compressor with the crankshaft rotary
motion.
3.4 Piston compressor. axle-driven compressor that compresses the gas through
reciprocating motion of the piston in the cylinder.
3.5 Diaphragm compressor. axle-driven compressor that finishes compression cycle
through direct-machinery-or-hydraulic-driven diaphragm deformation.
3.6 Free piston compressor. reciprocating compressor without crankshaft that
finishes the piston return and synchronization through directly using dynamic piston to
compress medium, utilizing the air cushion or synchronizing mechanisms.
3.7 Linear compressor. reciprocating compressor that compresses gas through
directly driving piston by the linear motor.
3.8 Rotary compressor. positive-displacement compressor that realizes the gas
compression through rotary motion of one or several rotors in the cylinder, further
making the working volume change regularly.
3.9 Scroll compressor. rotary compressor consisting of orbiting and fixed scroll; it
realizes the gas transportation and compression through horizontally moving of
orbiting scroll and meshing of the fixed scroll.
3.10 Liquid ring compressor. rotary compressor that finishes the gas transportation
and compression through forming a liquid ring close to the inner wall of cylinder by
liquid that is thrown under the centrifugal force caused by rotation of working wheel,
then forming a periodically expanding and contracting fan-shaped space between two
adjacent blades and the liquid ring.
3.11 Vane compressor. rotary compressor that realizes the gas transportation and
compression through eccentric rotor equipped with radial reciprocating vane, vane
close to the inner wall of cylinder and rotated with rotor to form the periodically change
of the elementary volume.
3.12 Triangle rotor compressor. rotary compressor that realizes the gas compression
through rotating the piston by the triangle in the approximately elliptical cylinder.
3.13 Mono-rotor screw compressor. rotary compressor that realizes gas
transportation and compression through the meshing motion between worm and the
planetary gear.
3.14 Screw compressor. rotary compressor that realizes gas transportation and
compression through two helical rotors at a certain transmission ratio intermeshing and
rotation.
3.15 Two-spool compressor. rotary compressor that realizes gas transportation and
compression through two double-lobed or multi-lobed rotors intermeshing, rotating by
synchronous gear.
3.16 Dynamic compressor. compressor that improves the gas pressure through
improving converting its kinetic energy into pressure energy by increasing the speed
of gas motion.
3.17 Turbine compressor. dynamic compressor with blades, rotary tables and
impellers.
3.18 Axial flow compressor. turbine compressor that gas flows approximately axially
on a cylindrical surface within a compressor stage.
3.19 Centrifugal compressor. turbine compressor that gas flows in radial direction
within the impeller channels.
NOTE. there are also mixed-flow turbine compressor (gas flows along the direction between
axial and radial ones) and combined turbine compressor.
3.20 Ejector. a type of dynamic compressor without moving elements that improves
the gas pressure through using high velocity gas or steam jet flow to carry off the
absorbed gas, then converting the kinetic energy of the gas mixture.
......
 
(Above excerpt was released on 2018-01-26, modified on 2021-06-07, translated/reviewed by: Wayne Zheng et al.)
Source: https://www.chinesestandard.net/PDF.aspx/GBT4976-2017