Home Cart Quotation About-Us
www.ChineseStandard.net
SEARCH

GY/T 220.1-2006 English PDF

US$4189.00 · In stock
Delivery: <= 25 days. True-PDF full-copy in English will be manually translated and delivered via email.
GY/T 220.1-2006: Mobile Multimedia Broadcasting - Part 1: Framing Structure, Channel Coding and Modulation for Broadcasting Channel
Status: Valid
Standard IDUSDBUY PDFLead-DaysStandard Title (Description)Status
GY/T 220.1-20064189 Add to Cart 25 days Mobile Multimedia Broadcasting - Part 1: Framing Structure, Channel Coding and Modulation for Broadcasting Channel Valid

Similar standards

GY/T 268.2   GY/T 268.1   GY/T 220.2   GY/T 220.6   GY/T 220.7   GY/T 220.5   

Basic data

Standard ID: GY/T 220.1-2006 (GY/T220.1-2006)
Description (Translated English): Mobile Multimedia Broadcasting - Part 1: Framing Structure, Channel Coding and Modulation for Broadcasting Channel
Sector / Industry: Radio, Film & TV Industry Standard (Recommended)
Classification of Chinese Standard: M60
Classification of International Standard: 33.160
Word Count Estimation: 166,162
Date of Issue: 2006-10-24
Date of Implementation: 2006-11-01
Quoted Standard: GB/T 7400.2; GB/T 7400.11,
Regulation (derived from): Communication Standards and Quality Information Network
Issuing agency(ies): State Administration of Radio and Television
Summary: This standard specifies the 3OMHz ~ 3000MHz frequency range, mobile multimedia broadcasting system broadcast channel transmission signal frame structure, channel coding and modulation. This standard applies to the 3OMHz ~ 3000MHz frequency range, via satellite and/or terrestrial wireless transmitter television, radio, data and other multimedia signals broadcast systems.

GY/T 220.1-2006: Mobile Multimedia Broadcasting - Part 1: Framing Structure, Channel Coding and Modulation for Broadcasting Channel


---This is a DRAFT version for illustration, not a final translation. Full copy of true-PDF in English version (including equations, symbols, images, flow-chart, tables, and figures etc.) will be manually/carefully translated upon your order.
Mobile Multimedia Broadcasting.Part 1. Framing Structure, Channel Coding and Modulation for Broadcasting Channel People's Republic of China Radio, Film and Television Industry Standard Mobile multimedia broadcasting. Part 1. Broadcast channels Frame structure, channel coding and modulation Mobile Multimedia Broadcasting Part 1. Framing Structure, Channel Coding and Modulation for Broadcasting Channel 2006-10-24 released 2006-11-01 Implementation Published by the State Administration of Radio, Film and Television GY

Contents

Foreword ... III Introduction ... IV 1 Scope ... 1 2 Normative references ... 1 3 Terms, definitions, abbreviations, symbols and conventions ... 1 3.1 Terms and definitions ... 1 3.2 Acronyms ... 2 3.3 Symbols and operators ... 3 4 System description ... 3 4.1 Summary ... 4 4.2 Physical layer structure ... 4 4.3 Physical layer frame structure ... 5 4.4 Input and output of the physical layer ... 8 5 Subsystem description ... 8 5.1 RS coding and byte interleaving ... 8 5.2 LDPC encoding ... 9 5.3 Bit interleaving ... 10 5.4 Constellation mapping ... 10 5.5 Frequency-domain OFDM symbol formation ... 12 5.6 Scrambling Codes ... 15 5.7 OFDM modulation ... 16 5.8 Framing ... 17 5.9 Modulated RF Signal ... 17 Appendix A (Normative) Transmitter Identification Sequence ... 21 Appendix B (Normative Appendix) RS (240, K) Generation Method ... 28 Appendix C (Normative) LDPC codeword bitmap vectors ... 30 Appendix D (Normative) LDPC code parity check matrix H ... 53 Appendix E (Informative) System payload data rate ... 159 Figure 1 Physical layer logical channel of the broadcast channel of the mobile multimedia broadcast system ... 4 Figure 2 Physical layer functional block diagram ... 5 Figure 3 Frame structure based on time slot division ... 5 Figure 4 Beacon Structure ... 5 Figure 5 Synchronous signal pseudo-random sequence generator ... 7 Figure 6 OFDM symbols ... 7 Figure 7 Overlap between guard intervals ... 7 Figure 8 Guard interval signal selection ... 8 Figure 9 Byte interleaver and RS (240, K) coding ... 9 Figure 10 Bit interleaving ... 10 Figure 11 BPSK constellation mapping ... 11 Figure 12 QPSK constellation mapping ... 11 Figure 13 16QAM constellation mapping ... 12 Figure 14 Signal distribution pattern ... 13 Figure 15 Linear feedback shift register generating scramble code ... 16 Figure 16 Schematic diagram of OFDM symbol subcarrier structure (Bf = 8MHz) ... 17 Figure 17 Schematic diagram of OFDM symbol subcarrier structure (Bf = 2MHz) ... 17 Figure 18 Theoretical power spectrum of a broadcast channel modulation signal (Bf = 8MHz) ... 18 Figure 19 Theoretical power spectrum of a broadcast channel modulation signal (Bf = 2MHz) ... 19 Figure 20 Modulated signal spectrum mask (Bf = 8MHz) ... 19 Figure 21 Modulated signal spectrum mask (Bf = 2MHz) ... 20 Table 1 T0 and T1 values ... 7 Table 2 Byte Interleaver Parameters MI ... 9 Table 3 LDPC encoding configuration ... 9 Table 4 Bit interleaver parameter values ... 10 Table 5 Position of consecutive pilots in OFDM symbols ... 13 Table 6 Continuous pilots used to transmit system information ... 14 Table 7 Transmission instructions ... 14 Table 8 Initial value of scrambled shift register ... 15 Table 9 Relative power value of each point in the spectrum mask when the in-band power is defined as 0dB (Bf = 8MHz) ... 20 Table 10 Relative power value of each point in the spectrum mask when the in-band power is defined as 0dB (Bf = 2MHz) ... 20 Table A1 Transmitter identification sequence ... 21 Table B1 RS (240,240) generator polynomial coefficients ... 28 Table B2 RS (240,224) generator polynomial coefficients ... 28 Table B3 RS (240,192) generator polynomial coefficients ... 28 Table B4 RS (240,176) generator polynomial coefficients ... 29 Table E1 System payload data rates ...

Foreword

This standard is Part 1 of the GY/T 220 mobile multimedia broadcasting standard series. Appendices A, B, C, and D of this standard are normative appendices. Appendix E of this standard is an informative appendix. This standard is under the jurisdiction of the National Radio and Television Standardization Technical Committee. This standard was drafted. State Administration of Radio, Film and Television, Academy of Broadcasting Science, Beijing Taimei Century Technology Co., Ltd. The main drafters of this standard. Yang Qinghua, Tao Tao, Ge Qihong, Liang Yibin, Song Weishi, Bai Dong.

Introduction

The issuer of this standard draws attention to the following facts. When users declare compliance with this standard, they may use Related granted and pending patents. The issuing body of this standard does not provide any opinions on the scope, validity and verification information of patents. The patent holder has assured the issuing authority of this standard that it is willing to cooperate with any applicant on reasonable and non-discriminatory terms and conditions. Negotiate with authorization. The patent holder's statement has been submitted to the issuer of this standard. The following table lists the patentee's information. Contact address of patentee Beijing Taimei Century Technology Co., Ltd. 11F, Unit 2, Building 2, No. 2 Landianchang East Road, Haidian District, Beijing (100097) Contact. Ye Ruirui Correspondence address. 11F, Building 2, Unit 2, No. 2, Landianchang East Road, Haidian District, Beijing Postal Code. 100097 Email. ruirui.ye@timitech.com Phone. 010-88865631 Please note that in addition to the patents that have been identified in the standard patent license statement, some parts of this part of GY/T 220 may involve their It's patented. GY/T 220 The issuing agency of this section shall not bear the responsibility of identifying these patents. Mobile multimedia broadcasting. Part 1. Broadcast channel frame structure, channel coding and modulation

1 Scope

This standard specifies the frame structure of the signal transmitted by the broadcast channel of the mobile multimedia broadcast system in the frequency range of 30MHz to 3000MHz, Channel coding and modulation. This standard applies to the transmission of television, radio, and data signals through satellite and/or terrestrial wireless in the frequency range of 30MHz to 3000MHz Broadcasting system for multimedia signals such as information.

2 Normative references

The clauses in the following documents have become the clauses of this standard after being referenced. For dated references, all subsequent Neither amendments (excluding errata) or revised versions are applicable to this standard, however, parties who have reached an agreement under this standard are encouraged to study Is the latest version of these files available? For undated references, the latest version applies to this standard. GB/T 7400.2 Radio and television terminology radio broadcasting GB/T 7400.11 Digital TV Terminology 3 Terms, definitions, abbreviations, symbols and conventions 3.1 Terms and definitions The following terms and definitions apply to this standard. 3.1.1 Guard interval Sends a transition signal between symbols for smoothing between symbols. 3.1.2 Pilot pilot A part of the subcarriers at a specific position in the OFDM symbol is used to transmit a signal demodulated by an auxiliary terminal. 3.1.3 Transmitter identifier signal A signal at the beginning of each time slot in the physical layer signal frame, used to distinguish between different transmitters. 3.1.4 Constellation mapping The process of mapping the symbols to be transmitted to the signal vector on the constellation. 3.1.5 Control logical channel The physical layer logical channel used to transmit system control information. The channel parameters are fixed. 3.1.6 Scattered pilot Pilots with different positions in adjacent OFDM symbols. 3.1.7 Continuous pilot Pilots with the same position in adjacent OFDM symbols. 3.1.8 Forward error correction code A coding structure that obtains error correction capabilities by adding redundant information. 3.1.9 Scramble code Binary sequence for data randomization. 3.1.10 Upper-layer data stream A data stream allocated by an upper-layer protocol and broadcast to a terminal via a logical channel in the physical layer. 3.1.11 Time slot Signal segments with a fixed time length in the physical layer signal frame can be received separately by the terminal. 3.1.12 Data sub-carrier A subcarrier in an OFDM symbol used to carry an upper layer data stream. 3.1.13 Physical logical channel The physical layer carries the transmission channels of the upper-layer service data streams. Each physical layer logical channel is independently coded and modulated, which can occupy one or more Time slot. 3.1.14 Beacon A signal at the beginning of each time slot, including the transmitter identification signal and the synchronization signal. 3.1.15 Virtual sub-carrier The OFDM subcarrier that does not carry any signal, the carrier transmit power is 0. 3.1.16 Cyclic prefix A piece of data located before the OFDM data body, whose content is a copy of the tail data of the OFDM data body. 3.1.17 Service logical channel The physical layer logical channel used for transmitting services. The channel parameters are configurable. 3.1.18 Valid sub-carrier The subcarriers that carry the actual signals in the OFDM symbols include data subcarriers, discrete pilots, and continuous pilots. 3.2 Acronyms The following abbreviations apply to this standard. BPSK (Binary Phase Shift Keying) CP (Cyclic Prefix) CLCH (Control Logical Channel) Control logical channel FEC (Forward Error Correction) GI (Guard Interval) IFT (Inverse Fourier Transform) LDPC (Low Density Parity Check) LSB (Least Significant Bit) MSB (Most Significant Bit) MUX (Multiplex) Orthogonal Frequency Division Multiplexing (OFDM) PLCH (Physical Logical Channel) Physical layer logical channel PN (Pseudo-random Noise Sequence) QAM (Quadrature Amplitude Modulation) QPSK (Quadrature Phase Shift Keying) RS (Reed-Solomon Codes) Reed-Solomon Codes SLCH (Service Logical Channel) service logic channel TxID (Transmitter Identifier) TS (Time Slot) 3.3 Symbols and operators The following symbols apply to this standard. fB physical layer bandwidth H LDPC parity check matrix bI bit interleaver columns bM bit interleaver rows IM byte interleaver rows bN Number of subcarriers for synchronization signal Number of subcarriers of the IDN transmitter identification signal Number of subcarriers of SN OFDM symbol Number of effective subcarriers for VN OFDM symbols () cP i complex pseudo-random scrambling code sequence () S t Physical layer RF signal () bS t sync signal () IDS t transmitter identification signal () nS t OFDM symbol bT synchronization symbol length CPT OFDM symbol cyclic prefix length GIT guard interval length Symbol length of IDT transmitter identification signal Symbol length of ST OFDM symbol Data body length of UT OFDM symbol GIT guard interval length () wt window function () bX i frequency domain pseudo-random sequence () IDX i Transmitter identification signal frequency domain pseudo-random sequence () bfΔ Subcarrier interval of synchronization signal () IDfΔ Subcarrier interval of the transmitter identification signal () SfΔ Subcarrier interval of OFDM symbol The following operators apply to this standard. T matrix transpose operator ⊗ Convolution operator

4 System description

4.1 Summary This standard defines each functional module of the physical layer of the broadcast channel of the mobile multimedia broadcast system in the frequency range of 30MHz to 3000MHz, and The frame structure, channel coding, modulation technology, and transmission instruction information of the physical layer transmission signal of the mobile multimedia broadcast channel are presented. This standard sets The defined broadcast channel physical layer bandwidth (fB) includes 8MHz and 2MHz options. Broadcast channel physical layer in the form of physical layer logical channel It provides upper-layer services with a configurable transmission channel and one or more independent broadcast channels. Physical layer logical channel support It supports multiple coding and modulation methods to meet different requirements for signal quality in different services and different transmission environments. Broadcasting information as defined in this standard The physical layer supports two networking modes. single-frequency network and multi-frequency network. Different transmission modes can be selected according to the characteristics of the application service and the networking environment. parameter. The physical layer supports a mixed mode of multiple services, matching the service characteristics and transmission modes, and realizing the flexibility and economy of business operations Sex. 4.2 Physical layer structure This section outlines the physical layer structure of the broadcast channel of a mobile multimedia broadcast system. Physical Channel Logical Channel (PLCH) provides a broadcast channel for upper-layer services. The physical layer logical channel is divided into a control logical channel (CLCH) and a service logical channel (SLCH). The control logical channel is used to carry broadcast system control information, and the service logical channel is used to carry broadcast services. The physical layer has only one fixed control Control logical channel, occupying the 0th time slot of the system to send Service logical channels are configured by the system. The number can be 1 to 39, and each service logical channel occupies an integer number of time slots, as shown in Figure 1. Time slot Time slot Time slot Time slot Time slot Time slot Time slot k + 1 Time slot k + 2 Time slot Time slot Time slot Channel coding, modulation, time slot allocation CLCH SLCH0 SLCH1 SLCH SLCH PLCH Figure 1 Physical layer logical channel of the broadcast channel of the mobile multimedia broadcast system The physical layer encodes and modulates each physical layer logical channel separately, and the control logical channel uses fixed channel encoding and modulation. Control mode. RS coding uses RS (240,240), LDPC coding uses 1/2 code rate, constellation mapping uses BPSK mapping, and the initial value of the scrambling code is an option 0. The coding and modulation modes of the service logical channel can be flexibly configured according to system requirements. The configuration mode is broadcast to the terminal through system control information. According to different coding and modulation parameters, the physical layer can provide different transmission payloads. For specific parameters, see Appendix E. The coding and modulation functional block diagram of the physical layer logical channel is shown in Figure 2. The detailed content of each sub-module is defined in Chapter 5. Input from upper layers The incoming data stream is multiplexed with discrete pilots and continuous pilots after forward error correction coding, interleaving, and constellation mapping to perform OFDM modulation. Tune The processed signal is inserted into the frame header to form a physical layer signal frame, and then transmitted after baseband to radio frequency conversion. RS coding and Byte interleaving LDPC Constellation mapping Bit cross Upper data stream 2 Scrambling framing Baseband to Radio frequency Transform OFDM frequency Domain symbol form OFDM tone Radio frequency emission RS coding and Byte interleaving LDPC Constellation mapping Bit cross Upper data stream 1 Discrete derivative Continuous guidance Transmission Display information RS coding and Byte interleaving LDPC Constellation mapping Bit cross Upper data stream N Figure 2 Physical layer functional block diagram 4.3 Physical layer frame structure 4.3.1 Frame Structure The physical layer signal is 1 frame every 1 second and is divided into 40 time slots. The length of each slot is 25ms, including 1 beacon and 53 OFDM symbols. The frame structure based on time slot division is shown in Figure 3. Figure 3 Frame structure based on time slot division 4.3.2 Beacons The beacon structure is shown in Figure 4, including the transmitter identification signal (TxID) and two identical synchronization signals. Figure 4 Beacon structure 4.3.2.1 Transmitter identification signal The transmitter identification signal () IDS t is a pseudo-random signal with limited frequency band and is used to identify different transmitters. () IDS t length is recorded as IDT, value It is 36.0 sμ. The transmitter identification signal is shown in equation (1). 2 ( ) ( ) 1 () (), 0 ID ID IDCP jift T ID ID ID iID S t X iet T Δ − = ≤ ≤∑ ... (1) In the formula. IDN-number of subcarriers of the transmitter identification signal () IDX i-BPSK modulated signal carrying the transmitter identification sequence () IDfΔ --Subcarrier interval of the transmitter identification signal, the value is 39.0625kHz IDCPT --Cyclic prefix length of the transmitter identification signal, value is 10.4 sμ The number of sub-carriers IDN of the transmitter identification signal is as follows according to different physical layer bandwidth (fB). 256, 8 64, 2 ID B MHz B MHz = ⎧⎪ = ⎨ = ⎪⎩ ...(2) The BPSK modulated signal () IDX i carrying the transmitter identification sequence is generated by mapping the transmitter identification sequence () TxID k. And formula (4). 8fB MHz =. 1 2 (1), 1 95 () 0, 0 96 159 1 2 (65), 160 255 ID TxID ii X iii TxID ii − × − ≤ ≤⎧⎪ = = ≤ ≤⎨⎪ − × − ≤ ≤⎩ Or ... (3) 2fB MHz =. 1 2 (1), 1 18 () 0, 0 19 44 1 2 (27), 45 63 ID TxID ii X iii TxID ii − × − ≤ ≤⎧⎪ = = ≤ ≤⎨⎪ − × − ≤ ≤⎩ Or ... (4) The transmitter identification sequence () TxID k is 191 bits (8fB MHz =) or 37 bits (2fB MHz =), as defined in Appendix A. 4.3.2.2 Sync Signal The synchronization signal () bS t is a band-limited pseudo-random signal, the length is recorded as bT, and the value is 204.8 sμ. See Equation (5) for the synchronization signal. 2 ( ) 1 () (), 0 jift bbb ib S t X iet T = ≤ ≤∑ ... (5) In the formula. bN-the number of subcarriers of the synchronization signal () bX i-BPSK modulated signal carrying binary pseudo-random sequence () bPN k () bfΔ-the subcarrier interval of the synchronization signal, with a value of 4.8828125kHz The number of subcarriers bN of the synchronization signal is as follows according to different physical layer bandwidths (fB). 2048, 8 512, 2 B MHz B MHz = ⎧⎪ = ⎨ = ⎪⎩ ... (6) The BPSK modulated signal () bX i carrying the binary sequence pseudo-random () bPN k is generated from the () bPN k mapping. (7). 8fB MHz =. 1 2 (1), 1 768 () 0, 0 769 1279 1 2 (512), 1280 2047 PN ii X iii PN ii − × − ≤ ≤⎧⎪ = = ≤ ≤⎨⎪ − × − ≤ ≤⎩ Or ... (7) 2fB MHz =. 1 2 (1), 1 157 () 0, 0 158 354 1 2 (198), 355 511 PN ii X iii PN ii − × − ≤ ≤⎧⎪ = = ≤ ≤⎨⎪ − × − ≤ ≤⎩ Or ... (8) The binary pseudo-random sequence () bPN k is generated by the linear feedback shift register shown in FIG. 5, and the generator polynomial is. 11 9 1x x. Shift The initial value of the register is the same for each synchronization signal and is 01110101101 (see Figure 5). Figure 5 Synchronous signal pseudo-random sequence generator 4.3.3 OFDM Symbol An OFDM symbol consists of a cyclic prefix (CP) and an OFDM data body (see F......
Image     

Tips & Frequently Asked Questions:

Question 1: How long will the true-PDF of GY/T 220.1-2006_English be delivered?

Answer: Upon your order, we will start to translate GY/T 220.1-2006_English as soon as possible, and keep you informed of the progress. The lead time is typically 20 ~ 25 working days. The lengthier the document the longer the lead time.

Question 2: Can I share the purchased PDF of GY/T 220.1-2006_English with my colleagues?

Answer: Yes. The purchased PDF of GY/T 220.1-2006_English will be deemed to be sold to your employer/organization who actually pays for it, including your colleagues and your employer's intranet.

Question 3: Does the price include tax/VAT?

Answer: Yes. Our tax invoice, downloaded/delivered in 9 seconds, includes all tax/VAT and complies with 100+ countries' tax regulations (tax exempted in 100+ countries) -- See Avoidance of Double Taxation Agreements (DTAs): List of DTAs signed between Singapore and 100+ countries

Question 4: Do you accept my currency other than USD?

Answer: Yes. If you need your currency to be printed on the invoice, please write an email to Sales@ChineseStandard.net. In 2 working-hours, we will create a special link for you to pay in any currencies. Otherwise, follow the normal steps: Add to Cart -- Checkout -- Select your currency to pay.