HOME   Cart(0)   Quotation   About-Us Tax PDFs Standard-List Powered by Google www.ChineseStandard.net Database: 189760 (11 Jan 2025)

GB/T 20801.4-2020 English PDF (GB/T 20801.4-2006)

GB/T 20801.4-2020_English: PDF (GB/T20801.4-2020)
Standard IDContents [version]USDSTEP2[PDF] delivered inStandard Title (Description)StatusPDF
GB/T 20801.4-2020English645 Add to Cart 0--9 seconds. Auto-delivery Pressure piping code - Industrial piping - Part 4: Fabrication and assembly Valid GB/T 20801.4-2020
GB/T 20801.4-2006English150 Add to Cart 0--9 seconds. Auto-delivery Pressure piping code -- Industrial piping -- Part 4: Fabrication and assembly Obsolete GB/T 20801.4-2006


BASIC DATA
Standard ID GB/T 20801.4-2020 (GB/T20801.4-2020)
Description (Translated English) Pressure piping code - Industrial piping - Part 4: Fabrication and assembly
Sector / Industry National Standard (Recommended)
Word Count Estimation 44,471
Date of Issue 2020-11-19
Date of Implementation 2021-06-01
Older Standard (superseded by this standard) GB/T 20801.4-2006
Regulation (derived from) National Standard Announcement No. 26 of 2020

BASIC DATA
Standard ID GB/T 20801.4-2006 (GB/T20801.4-2006)
Description (Translated English) Pressure piping code. Industrial piping. Part 4: Fabrication and assembly [Quasi-Official / Academic version - scanned PDF, translated by Standard Committee / Research Institute in China]
Sector / Industry National Standard (Recommended)
Classification of Chinese Standard J74
Classification of International Standard 23.040
Word Count Estimation 28,246
Date of Issue 2006-12-30
Date of Implementation 2007-06-01
Quoted Standard GB/T 17116.1-1997; GB/T 20801.1-2006; GB/T 20801.2-2006; GB/T 20801.3-2006; GB/T 20801.5-2006; JB 4708; boiler and pressure vessel and pressure pipe welders management rules
Drafting Organization National Chemical Equipment Design Technology Center
Administrative Organization National Standardization Technical Committee Boiler and Pressure Vessel
Regulation (derived from) China National Standard Approval Announcement2006 No.13 (Total No.100)
Proposing organization National Standardization Technical Committee Technical Committee pipeline pressure boiler and pressure vessel (SAC/TC 262/SC 3)
Issuing agency(ies) Administration of Quality Supervision, Inspection and Quarantine of People's Republic of China; Standardization Administration of China
Summary This standard specifies the GB/T 20801. 1 range pressure pipe fabrication and installation of basic requirements. These basic requirements include production, welding, preheat, provisions assembly and installation, and pipeline cleaning, etc., heat treatment.


GB/T 20801.4-2020 GB NATIONAL STANDARD OF THE PEOPLE’S REPUBLIC OF CHINA ICS 23.040 J 74 Replacing GB/T 20801.4-2006 Pressure Piping Code - Industrial Piping - Part 4: Fabrication and Assembly ISSUED ON: NOVEMBER 19, 2020 IMPLEMENTED ON: JUNE 1, 2021 Issued by: State Administration for Market Regulation; Standardization Administration of the People’s Republic of China. Table of Contents Foreword ... 3  1 Scope ... 5  2 Normative References ... 5  3 Terms and Definitions ... 6  4 General Rules ... 9  5 Inspection and Acceptance Inspection of Pipework Components and Materials ... 10  6 Fabrication of Piping ... 13  7 Welding ... 20  8 Preheating... 36  9 Heat Treatment ... 39  10 Assembly and Erection ... 49  11 Stainless Steel and Non-ferrous Metal Piping ... 58  12 Piping Cleaning, Purging and Rinsing ... 60  Appendix A (Informative) Evaluation Method for Misalignment of Piping at Closure Point ... 63  Appendix B (Informative) Flange Joint Bolt Tightening Method and Erection Target Load ... 71  Pressure Piping Code - Industrial Piping - Part 4: Fabrication and Assembly 1 Scope This Part of GB/T 20801 specifies the basic requirements for the fabrication and assembly of pressure piping. These basic requirements include regulations on fabrication, welding, preheating, heat treatment, assembly, erection and piping cleaning, etc. This Part is applicable to the fabrication and assembly of pressure pipework components defined in the scope of GB/T 20801.1. 2 Normative References The following documents are indispensable to the application of this document. In terms of references with a specified date, only versions with a specified date are applicable to this document. In terms of references without a specified date, the latest version (including all the modifications) is applicable to this document. GB/T 985.1 Recommended Joint Preparation for Gas Welding, Manual Metal Arc Welding, Gas-shield Arc Welding and Beam Welding GB/T 985.2 Recommended Joint Preparation for Submerged Arc Welding GB/T 985.3 Recommended Joint Preparation for Gas-shield Arc Welding on Aluminum and Its Alloys GB/T 985.4 Recommended Joint Preparation for Welding on Clad Steels GB/T 13927 Industrial Valves - Pressure Testing GB/T 20801.1-2020 Pressure Piping Code - Industrial Piping - Part 1: General GB/T 20801.2-2020 Pressure Piping Code - Industrial Piping - Part 2: Materials GB/T 20801.3-2020 Pressure Piping Code - Industrial Piping - Part 3: Design and Calculation GB/T 20801.5-2020 Pressure Piping Code - Industrial Piping - Part 5: Inspection and Testing GB/T 20801.6-2020 Pressure Piping Code - Industrial Piping - Part 6: Safeguarding directly guide the welding production, which are formulated in accordance with the welding procedure qualification report and the combined practical experience. NOTE: it includes detailed provisions on butt-welded joint, base material, welding material, welding position, preheating, electrical characteristics and operating techniques, in order to ensure the reproducibility of welding quality. 3.15 Welding Performance Qualification Welding performance qualification refers to the process of evaluating the operating skills of welding operators. 3.16 Preheating Preheating refers to the process of heating the base material before or during the forming, welding or cutting process. 3.17 Interpass Temperature Interpass temperature refers to the instantaneous temperature of multi-pass weld and the adjacent base material before welding the next weld pass. 3.18 Post Weld Heat Treatment Post weld heat treatment refers to the thermal process that can change the structure and performance of welded joint or the welding residual stress. 3.19 Pipework Components Pipework components is a general term for various parts and components connected or assembled into a piping system, including piping components and pipe-supporting elements. 3.20 Final Closure Point Final closure point refers to the last connector for assembly between two fixed positions in the piping system. NOTE: the connection mode of the final closure point can be welding (butt joint and socket welding joint) or flange connection. 3.21 Misalignment at the Final Closure Point Misalignment at the final closure point refers to the deviation of the final closure point when being assembled without external force, which can be decomposed into misalignment of three directions: transverse (X, Y axes) and axial (Z axis). The misalignment in the transverse (X, Y axes) direction indicates the degree of deviation between the center lines of the end faces of two connected pipe segments. The misalignment in the axial (Z axis) direction indicates the amount of clearance between the parallel sections of the ends of two connected pipe segments. 3.22 Length of Assembly Pipe Length of assembly pipe refers to the length of assembled pipe segment in a certain direction (X, Y or Z axis), that is, the sum of the cumulative length of pipe segments in the other two directions (transverse or axial) extending from the closure point to the two ends to the nearest two fixed positions in the piping system. 4 General Rules 4.1 The organization manufacturing, fabricating and erecting the piping shall have an administrative license that complies with the requirements of relevant laws and regulations for pressure piping safety supervision. The organization fabricating and erecting the piping shall establish a corresponding quality assurance system and comply with the following stipulations: a) In possession of a sound quality management system, and documents on the fabrication and erection process. The process documents (such as: construction organization design and construction schemes, etc.) shall be approved by the proprietor (or its entrusting party) before they can be used for piping fabrication or erection; b) The personnel participating in the fabrication or erection of the piping shall have the corresponding capabilities and perform their respective duties; c) The measuring instruments used shall be qualified and within the validity period. 4.2 The fabrication and erection of the piping shall be carried out in accordance with the design documents and the stipulations of this Part. When it is necessary to modify the design documents and substitute engineering materials, it shall be approved by the original design organization, and a written document shall also be issued. 4.3 The organization fabricating and erecting the piping should adopt a piping welding information management system, and timely input and save the relevant data of pipework components, welding, heat treatment, inspection and testing, etc. 4.4 The organization fabricating and erecting the piping shall establish and properly keep the necessary construction records and certification documents. After the completion of the piping erection project, the organization fabricating and erecting the piping shall submit at least the following technical documents and materials to the proprietor: a) Piping erection as-built drawing (including piping isometric diagram, design complete, and can be traced back to the product quality certification documents. 5.2 Appearance Inspection The pipework components and materials shall be checked for their materials, specifications, models and quantities in accordance with the stipulations of the design documents and product standards. In addition, the inspection and acceptance inspection of appearance quality and geometric dimensions shall be carried out one by one. The results shall comply with the stipulations of the design documents and the corresponding product standards. 5.3 Material Inspection For piping components made of chromium-molybdenum alloy steel, nickel-containing low-temperature steel, stainless steel, nickel and nickel alloy, titanium and titanium alloy materials, before use, positive material identification (PMI) or other methods shall be adopted to check the contents of main alloy elements. The quantity shall satisfy the following requirements: a) For GC1 piping, the inspected quantity shall be spot inspection at 10% of each inspection lot and not less than 1 piping component; b) For other piping, the inspected quantity shall be random inspection at 5% of each inspection lot and not less than 1 piping component. NOTE: each inspection lot represents a batch of pipework components or materials that have the same furnace batch number, the same model and specification, and arrive at the same time. 5.4 Valve Pressure Test 5.4.1 The valves shall receive pressure test, and the quantity shall satisfy the following requirements: a) Valves used for GC1 piping shall be subject to shell pressure test and sealing test one by one; b) Valves used for GC2 piping shall be subject to shell pressure test and sealing test in accordance with random inspection at 10% of each inspection lot, and the quantity shall be not less than one; c) Valves used for GC3 piping shall be subject to shell pressure test and sealing test in accordance with random inspection at 5% of each inspection lot, and the quantity shall be not less than one; d) With the consent of the designer or the proprietor, valves undergoing pressure test one by one at the manufacturer and have the test records may be exempted from the pressure test. 5.4.2 The pressure test methods, procedures and test results of the valves shall comply with the stipulations of the design documents and the supply contracts. When there is no such stipulation, they shall comply with the stipulations of GB/T 13927. 5.4.3 With the consent of the designer or the proprietor, for gate valves with a nominal pressure less than or equal to PN100 and a nominal diameter greater than or equal to DN600, the pressure test may be carried out with the piping system; the color printing method may be used for the sealing test. 5.4.4 The calibration of the safety valves shall be carried out in accordance with the stipulations of TSG ZF001 and the design documents. 5.4.5 When valves with jackets are subject to a jacket pressure test, the test pressure shall be 1.5 times the jacket design pressure. 5.5 Other Inspections When the design documents put forward other inspection and acceptance inspection requirements (such as: non-destructive testing and hardness inspection, etc.) for the pipework components and materials, they shall be satisfied. The inspection methods, quantities and inspection results shall comply with the stipulations of the design documents and the relevant standards. 5.6 Disposal of Non-Conforming Products 5.6.1 During sampling inspection, detection or testing of the pipework components and materials, if one piece is disqualified, then, the inspection lot represented by the sampling inspection, detection or testing shall be deemed as disqualified; this inspection lot of pipework components and materials must not be used. Or the inspection lot of pipework components and materials shall be inspected, detected or tested one by one, and the qualified ones may still be used. 5.6.2 During sampling inspection, detection or testing of the pipework components and materials, records and material identification marks shall be made, and the disqualified products shall be isolated. 5.7 Material Storage During the fabrication and erection process, the pipework components and materials shall be properly kept, and shall not be mixed or damaged. During the storage, stainless steel and non-ferrous metal pipework components and materials shall not come into contact with carbon steel or low-alloy steel. The orifices of the pipes, valves and fittings that are not temporarily installed shall be closed. medium in the jacket, and the expansion and contraction of the inner pipe and the outer pipe; its material shall be the same as the inner pipe. The geometric sizes, installation position and spacing of the positioning plate shall comply with the stipulations of the design documents and the relevant standards. 6.7.5 The welding, heat treatment, examination, inspection and testing of the jacketed pipes shall comply with the corresponding clauses of this Part and the relevant stipulations of GB/T 20801.5-2020. 6.8 Hangers and Supports 6.8.1 The form, materials, processing sizes and accuracy of the piping hangers and supports shall comply with the stipulations of the design documents, the relevant standards and product technical documents. 6.8.2 The assembly dimensions and welding mode of the piping hangers and supports shall comply with the stipulations of the design documents. After fabrication, the welds shall be visually inspected, and welding deformations shall be corrected. All threaded connections shall be locked in accordance with the design requirements. 6.8.3 The welds in the hangers and supports that require full penetration shall be subject to radiographic testing and ultrasonic testing, and shall comply with the relevant stipulations of GB/T 20801.5-2020. The inspection quantity shall be not less than 20%, and the weld length shall be not less than 200 mm. 6.8.4 The hangers and supports qualified in the fabrication shall receive rust-proof treatment and shall be properly classified and stored. Alloy steel hangers and supports shall be marked with the material. 7 Welding 7.1 Welding Procedure Qualification and Welding Performance Qualification 7.1.1 The welding of piping pressure-bearing parts and pressure-bearing parts, as well as the welding of pressure-bearing parts and non-pressure-bearing parts, shall adopt qualified welding procedures and be welded by qualified welders. 7.1.2 The welding procedure qualification shall comply with the stipulations of NB/T 47014. The impact test requirements shall comply with the stipulations of 8.2 in GB/T 20801.2-2020. 7.1.3 When the materials required for the welding procedure qualification cannot satisfy the stipulations of 7.1.2, with the consent of the designer and the proprietor, it is allowed to use the mode of technical review of the pre-welding procedure specification to replace the welding procedure qualification, but the following conditions shall be satisfied at the same time: a) The welding organization has grasped the characteristics of the metal material (chemical composition, mechanical properties and welding performance); b) The welding organization can provide the welding procedure qualification of other base materials in the same category (same group), and has the experience (achievements) in the welding; c) The welder performing the welding has obtained the corresponding performance qualification; d) It is able to provide welding procedure qualification of the material that complies with the requirements of 7.1.2 completed by other organizations. 7.1.4 Before the welding of the piping, in accordance with the welding procedure qualification report (or the pre-welding procedure specification that has passed the technical review), the welding procedure specification shall be formulated to guide the welders’ welding and post-weld heat treatment. The welding procedure specification shall include at least the following contents: a) Welding method and type of operation (manual, automatic, semi-automatic); b) Joint form, size and processing requirements of the welded joint; c) Standard No., model, specification and relevant requirements of the base material of the welded joint; d) Standard No., model, designation, specification and baking requirements of the welding material; e) Welding position and welding direction; f) Preheating and interpass temperature control requirements (preheating temperature, interpass temperature range, heating mode and range, measurement method, etc.), and if necessary, post-heating requirements (post-heating temperature, time, heating and slow cooling modes, etc.); g) Post-weld heat treatment requirements (heat treatment temperature, heat preservation time, heating rate, cooling rate, heating and measurement modes, etc.); h) Type (composition), mixing ratio (purity), flow rate and other requirements of the protective gas; i) Electrical characteristics and process parameters of welding; j) Essentials and technical measures of welding operation; b) Alloy steel piping with the lower limit of the standard tensile strength greater than or equal to 540 MPa. 7.4.5 Welding equipment The welding equipment and auxiliary equipment shall be able to ensure the normal operation, safety and reliability of the welding; the instruments shall be regularly calibrated. 7.5 Basic Requirements for Welding 7.5.1 Welding procedures that pass the welding procedure qualification shall be adopted. The welds (including the weld metal surfacing for assembly and welding) shall be welded by qualified welders in accordance with the welding procedure specification. 7.5.2 During the welding, a reasonable welding method and welding sequence shall be adopted: a) During the welding of carbon steel and alloy steel, the method of electrode arc welding, tungsten inert gas shielded arc welding, molten electrode gas shielded arc welding, self-shielded flux-cored wire arc welding, submerged arc welding or gas welding may be adopted; b) During the welding of aluminum and aluminum alloys, the method of tungsten inert gas shielded arc welding or molten inert gas shielded arc welding may be adopted; c) During the welding of copper and copper alloys, titanium and titanium alloys, zirconium and zirconium alloys, the method of tungsten inert gas shielded arc welding may be adopted. The method of oxyacetylene (gas welding) welding may also be adopted for brass; d) During the welding of nickel and nickel alloys, the method of electrode arc welding, tungsten inert gas shielded arc welding, molten inert gas shielded arc welding or submerged arc welding may be adopted. 7.5.3 For piping welds with a chromium content greater than or equal to 3%, or a total content of alloy elements greater than 5%, when tungsten inert gas shielded arc welding or molten electrode gas shielded arc welding is used for single-sided welding of the root pass, the back of the weld shall be filled with argon or other shielding gases, or other measures shall be taken to prevent the metal of the back weld from being oxidized. 7.5.4 Except for the demand of welding in separate times due to process or inspection requirements, generally speaking, each weld shall be continuously welded at one time. When welding is interrupted for a certain reason, measures like heat preservation and slow cooling, or post-heating shall be taken in accordance with the process requirements to prevent the generation of cracks. Before re-welding, the surface of the weld layer shall be checked, and after confirming that there are no cracks, the welding may be continued in accordance with the original process requirements. 7.5.5 On the root pass and the cover pass, it is not advisable to use hammering to eliminate the residual stress. 7.5.6 When welding the valves connected by welding, the adopted welding sequence, process and post weld heat treatment shall ensure that the sealing performance of the valve seat is not affected. 7.5.7 DO NOT perform arc striking or current testing on the surface of the weldment. For piping whose design temperature is not higher than 20 C, alloy steel piping with a relatively great tendency for hardening, stainless steel and non-ferrous metal piping, their surfaces shall not have defects like arc scratches. 7.5.8 Under one of the following circumstances, the weld root of the single-sided welding of the piping shall adopt tungsten inert gas shielded arc welding or other welding process methods that can ensure the quality of the root welding: a) GC1 piping; b) Piping with a nominal diameter less than 500 mm and a design temperature lower than 20 C; c) Piping with relatively high requirements for internal cleaning and difficulty to clean after welding; d) Inlet piping of machines; e) Other piping specified in the design. 7.5.9 Piping with a nominal diameter greater than or equal to 500 mm should be welded on both sides of the root on the inside. 7.5.10 For multi-pass welding, after each pass is completed, cleaning and visual inspection shall be immediately carried out. If defects are found, they shall be eliminated before proceeding to the next layer of welding. 7.5.11 For welds that require interlayer non-destructive testing, the non-destructive testing shall be performed after it passes the visual inspection. The non-destructive testing on the surface shall be carried out before radiographic testing and ultrasonic testing. After the welds pass the qualification, the welding may be continued. 7.5.12 After the welding is completed, the slag on the surface of the welds and nearby spatters shall be cleaned up in time. 7.5.13 Each welder shall have a designated identification code. Unless it is otherwise tc---the effective thickness of the fillet weld, which shall take the smaller value between 0.7Tb or 6.4 mm; Tb---the nominal thickness of the branch pipe; Th---the nominal thickness of the main pipe; Tr---the nominal thickness of the reinforcement ring or the saddle-shaped reinforcement; tmin---tb or Tr, whichever is smaller; Tm---the nominal thickness of the weld of the branch pipe seat. When there is no such requirement in the design documents or the instruction manual of the branch pipe connector manufacturer, the thickness shall be the largest thickness of the combined weld joint after the assembly. The cover fillet weld of the connection between the branch pipe seat and the main pipe is an equilateral fillet weld at the longitudinal section, but at other sections, with the aperture ratio of the branch pipe / main pipe, especially at the cross-section, it may transform to non-equilateral fillet weld. However, it shall maintain a smooth transition with the joint weld and the surface of the main pipe. Figure 10 (continued from previous page) 7.8.2 The joints of the placed welded branch pipes or the plug-in welded branch pipes, including the integrally reinforced branch pipe seats, shall be fully welded; the thickness of the fillet weld of the cover surface shall be not less than the effective thickness of the fillet weld [see Figure 10a) and Figure 10b)]. 7.8.3 The welding of the reinforcement ring or the saddle-shaped reinforcement shall comply with the following stipulations: a) The reinforcement ring and the branch pipe shall be fully welded; the thickness of the fillet weld of the cover surface shall be not less than the effective thickness of the fillet weld [see Figure 10c) and Figure 10d)]. b) The thickness of the fillet weld between the saddle-shaped reinforcement and the branch pipe connection shall be not less than 0.7tmin [see Figure 10e)]. 7.8.4 The thickness of the fillet weld between the outer edge of the reinforcement ring or the saddle-shaped reinforcement and the main pipe shall be greater than or equal to 0.5Tr [see Figure 10c), Figure 10d) and Figure 10e)]. 7.8.5 The reinforcement ring and the saddle-shaped reinforcement shall fit well with the main pipe and the branch pipe. A vent hole for the welding of welds and leak detection shall be opened at the high position of the reinforcement ring or the saddle- shaped reinforcement (not at the axis of the main pipe). The reinforcement ring and the saddle-shaped reinforcement may be composed of multiple pieces of splicing, but ......


ICS 23.040 J74 National Standard of the People's Republic of China Pressure Piping Code-Industrial Piping Part 4. Fabrication and Assembly ISSUED ON. DECEMBER 30, 2006 IMPLEMENTED ON. JUNE 1, 2007 Issued by General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China Standardization Administration of the People's Republic of China Content Scope .. 1 2 Normative References . 1 3 Terminology and Definitions .. 1 4 General Provisions . 2 5 Inspections and Acceptance of Piping Subassemblies and Supports .. 3 6 Piping Fabrication .. 5 7 Welding . 10 8 Preheating . 20 9 Heat Treatment .. 21 10 Assembly and Erection .. 27 11 Stainless Steel and Nonferrous Metal Pipes .. 34 12 Pipe Cleaning, Blowing and Washing .. 36 Pressure Piping Code-Industrial Piping-Part 4. Fabrication and Assembly 1 Scope The other requirements on the fabrication and assembly not included in this part shall comply with the provisions of the other parts of the Code (GB/T20801-2006), as well as the applicable national standards and norms. 2 Normative References The provisions contained in the following documents shall have become the provisions of this Code when they are quoted hereof. The dated documents so quoted and the modification lists (excluding the corrections) or revisions made thereafter shall not be applicable to this Code; however, all parties who have reached agreements based on this Code are encouraged to study the possibility to implement the latest version of these documents. Of the undated documents so quoted, the latest version shall be applicable to this Code. Examination and management rules for boiler and pressure vessel pressure piping welders GB/T 17116.1 -1997 Pipe supports and hangers-Part 1. Technical specifications GB/T 20801.1 -2006 Pressure piping code-Industrial piping-Part 1. General GB/T 20801.2-2006 Pressure piping code-Industrial piping-Part 2. Material GB/T 20801. 3 - 2006 Pressure piping code-Industrial piping-Part 3. Design and calculation GB/T 20801. 5-2006 Pressure piping code-Industrial piping-Part 5. Inspection and test GB/T 20801.6-2006 Pressure piping code-Industrial piping-Part 6. Safeguarding JB 4708-2005 Welding Procedure Qualification for Pressure Equipment 3 Terminology and Definitions 3.1 Manufacture The production process of pipe and piping subassembly or piping supports and other products thereof; Products should meet the requirements of the corresponding product standards, the relevant specifications and design documents. 3.2 Fabrication Preparations before pipe installation work, including cutting, processing thread, opening groove, forming, bending, welding and assembling the parts into subassemblies; The fabrication can be carried out in the workshop or on site. 3.3 Assembly Two or more piping subassemblies are to be connected together by way of bolts, welding, bonding, thread, hard soldering, soft soldering method or by sealing elements in accordance with the provisions of engineering design. 3.4 Erection It is to install one piping system completely onto the appointed location and supports according to the provisions of engineering design, which shall include all the on-site (including pipe pre-fabrication) assembling, fabrication, inspection and test and so on of the system as required by the specifications. 3.5 Isometric diagram It is to draw the pipeline elevation system in single line by axonometric projection method for each pipeline. 3.6 Hot bending It is the pipe bending operation when temperature is higher than the metal critical point ACl. 3. 7 Cold bending It is the pipe bending operation when temperature is lower than the metal critical point ACl. 3.8 Pipe-segments to be prefabricated It is pipe segment determined by the isometric diagram that can be processed before piping is fabricated. 3.9 Pipe-segments for dimension adjustment It is pipe segment determined by the isometric diagram that can be processed after dimensions are measured before piping is erected. 3.10 Tack weld It is the weld used to maintain all parts of weld assembly in correct positions before the final weld is completed. 4 General Provisions 4.1 Piping fabrication and installation units should have the quality management system or quality assurance system in line with the regulatory requirements for pressure pipeline safety supervision. 4.2 Piping Fabrication and Assembly shall establish and properly keep the necessary construction records and witness documents. Upon the completion of pressure piping, the Fabrication and Assembly units shall at least submit to the Owner the following technical documents and data. a) Piping as-built drawings (including design modification documents and material substitution list). The design modifications and material substitution and other changes should be directly indicated on the as-built drawings. On the piping isometric diagram it shall indicate the weld position, weld number, welder code, welding position, reworked weld, non-destructive testing methods and the weld sampled, the weld for expanded test, and the weld subject to heat treatment and hardness spot checks, etc. b) Product certifications, quality certificates or re-inspection and test reports for pressure piping subassemblies and supports and welding materials. c) Construction inspection records and inspection and test reports. The formats and contents of which should be consistent with the provisions of the corresponding codes for construction and acceptance. d) Project handover acceptance certificate. 5 Inspections and Acceptance of Piping Subassemblies and Supports 5.1 Acceptance on materials, marking and quality certifications The marking and quality certifications of piping subassemblies shall, in addition to the acceptance to be made according to the requirements as set forth in design documents and 9.2 and 9.3 in Part 2 of this Code (GB/T 20801.2-2006), also conform to the following provisions. a) For the materials subject to low-temperature impact toughness test as specified in the design documents, the certifications shall contain the results of such low-temperature impact toughness test. b) For the stainless steel pipes and fittings subject to intergranular corrosion test as specified in the design documents, the certifications shall contain the results of such intergranular corrosion test. c) When the performance data contained in the quality certifications do not meet the requirements of product standards or design documents, or there are objections on performance data, it should carry out the necessary additional tests. 5.2 Visual examination The material grade, size and appearance quality of piping subassemblies and supports shall be subject to visual inspection and spot check on geometrical dimensions according to the corresponding standards, those unqualified should not be put into use. 5.3 Material quality inspection 5.3.1 The piping subassemblies made of alloy steel, nickel-containing low temperature steel, molybdenum-containing austenitic stainless steel and nickel-based alloys, titanium and titanium alloy materials shall be retested on the main alloying elements by spectral analysis or other methods for 5% of each batch (the same furnace batch and specifications, the same ......

Similar standards: GB/T 20801.1-2020  GB/T 20801.2-2020  
Similar PDFs (Auto-delivered in 9 seconds): GB/T 20801.4-2020  GB/T 20801.5-2020  GB/T 20801.3-2020  GB/T 20801.6-2020