QC/T 29096-2014

Translated English of Chinese Standard: QC/T29096-2014

<u>www.ChineseStandard.net</u> → Buy True-PDF → Auto-delivery.

<u>Sales@ChineseStandard.net</u>

QC

AUTOMOBILE INDUSTRY STANDARD OF THE PEOPLE'S REPUBLIC OF CHINA

ICS 43.040.50

T 23

QC/T 29096-2014

Replacing QC/T 29096-1992

The bench test methods of automobile steering gear

汽车转向器总成台架试验方法

Issued on: May 06, 2014 Implemented on: October 01, 2014

Issued by: Ministry of Industry and Information Technology of the People's Republic of China

QC/T 29096-2014

Table of Contents

Foreword	7
1 Scope	9
2 Normative references	9
3 Terms and definitions	9
4 General requirements	9
5 Test methods	10

Appendix:

Number, name, and date of implementation of 32 automotive industry standards

Stanuarus					
No.	Standard	Standard name	Number of	Date of	
INU.	number	Standard hame	standard replaced	implementation	
1	OC/T 004 0044	Specification of kick-starter for	QC/T 231-1997	October 01,	
' '	QC/T 231-2014	motorcycles and mopeds	QC/1 231-1991	2014	
		Performance and measurement		0.1.1.01	
2	QC/T 233-2014	method for static intensity of	QC/T 233-1997	October 01,	
		motorcycles and mopeds	Q0/1 200 100/	2014	
3 Q0		Wet clutch for moped and		October 01,	
	QC/T 66-2014	motorcycles	QC/T 66-1993	2014	
4 QC/T 962-20		Technical specifications for coating of		October 01,	
	QC/T 962-2014			· ·	
		motorcycles and moped		2014	
	QC/T 680-2014	General technical specifications for		October 01,	
5		voltage regulators for motorcycles and	QC/T 680-2002	2014	
		moped			
6	QC/T 963-2014	Drum brakes of motorcycles and		October 01,	
	QO/1 300-2014	mopeds wheels		2014	
	QC/T 234-2014	General technical specifications for		Ootobor 01	
7		steering shaft for motorcycles and	QC/T 234-1997	October 01,	
		moped		2014	
	QC/T 964-2014	The strength of plastic seats and their		October 01,	
8		anchorages for city buses		2014	
	QC/T 644-2014	Technical specifications for	QC/T 644-2000	October 01,	
9		automotive metallic fuel tank	QC/T 488-2000	2014	
	QC/T 965-2014	Driver of electric rear-view mirrors for	Q 0/ 1 100 2000	October 01,	
10		motor vehicles		2014	
11	QC/T 966-2014	Technical specifications for		October 01,	
		automotive plastic parts coatings		2014	
12	QC/T 459-2014	Truck with loading crane	QC/T 459-2004	October 01,	
	·	-		2014	
13	QC/T 29106- 2014	Technical specification of automobile	QC/T 29106-2004	October 01,	
10		wire harness	Q0/1 20100 2001	2014	
14	QC/T 198-2014	General technical specification for	QC/T 198-1995	October 01,	
14		automotive switch	QC/1 190-1993	2014	
4.5	QC/T 220-2014	Technical specifications for	OC/T 000 4000	October 01,	
15		automotive fusible links	QC/T 220-1996	2014	
				October 01,	
16	QC/T 967-2014	Port fuel injector for gasoline engine		2014	
	QC/T 968-2014	Determination methods of platinum,			
17		palladium and rhodium contents in		October 01,	
''		_		2014	
	QC/T 969-2014	metallic catalytic converters		Ootob == 04	
18		Interior truck release for compartment		October 01,	
		of a passenger car		2014	
19	QC/T 636-2014	Electric window regulator specification	QC/T 636-2000	October 01,	
		for vehicles	20, . 000 2000	2014	
20	QC/T 970 2014	Passenger car air filter technical		October 01,	
20	30/10/02014	specification		2014	

The bench test methods of automobile steering gear

1 Scope

This Standard specifies the bench test methods of recirculating-ball automobile steering gear and pinion-and-rack automobile steering gear.

This Standard applies to recirculating-ball and pinion-and-rack automobile steering gear.

2 Normative references

The following documents are indispensable for the application of this Standard. For the dated references, only the editions with the dates indicated are applicable to this Standard. For the undated references, the latest edition (including all the amendments) are applicable to this Standard.

GB/T 5179 Motor vehicle - Steering system - Terms and definitions

QC/T 29097 The technical specifications of automobile steering gear

3 Terms and definitions

The terms and definitions defined in GB/T 5179 and QC/T 29097 apply to this Standard.

4 General requirements

4.1 Test type

The test items of this Standard, from the main categories, are divided into the following three types:

- Performance test;
- Strength test;
- Durability test.

4.2 Accuracy of test instruments

QC/T 29096-2014

The accuracy of the test instruments used in each test item must meet the following corresponding requirements:

- Accuracy requirement of angle sensor: 0.1°;
- Accuracy of displacement sensor: 0.01 mm;
- Accuracy of torque sensor: 1%;
- Accuracy of force sensor: 1%.

5 Test methods

5.1 Performance

5.1.1 Full rotation angle of input shaft.

FIX the steering gear. There shall be no gap between the sensor and the input shaft. ROTATE the input shaft from one limit position to another limit position; MEASURE the total rotation angle.

5.1.2 Rack travel.

FIX the steering gear. There shall be no gap between the sensor and the rack. Install pull rods or substitutes on both ends of the rack; MEASURE the distance that the rack moves from one end to the other.

5.1.3 Transmission ratio.

5.1.3.1 Angular transmission ratio of recirculating-ball steering gear.

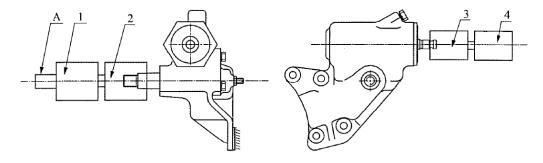
FIX the steering gear. Install the angle sensor close to the input shaft and the rocker arm shaft; the connection is required to be gap-free, see Figure 1. ROTATE the input shaft from one-end limit position to the other-end limit position; DRIVE the input shaft at a speed of 10r/min ~ 15 r/min; MEASURE the instantaneous angle values of the input shaft and the rocker arm shaft.

and reverse torque of the input shaft in the whole process. The input shaft speed is 15r/min.

REMOVE about 30° at both ends of the relationship curve, obtained by the test, between the rotation angle and the torque. Calculate the average torque of \pm 180° in the middle and the average torque of the remaining rotation angles on both sides.

5.1.5 Rack moving force.

FIX the steering gear housing. Connect the force sensor and displacement sensor to the rack. The connection is required to be free of gaps. PUSH (PULL) the rack; MEASURE the moving force of the rack. The rack moving speed is 0.5m/min.


REMOVE the 3mm data at both ends of the displacement and force relationship curve obtained by the test; DRAW the displacement and force relationship curve.

5.1.6 Transmission clearance.

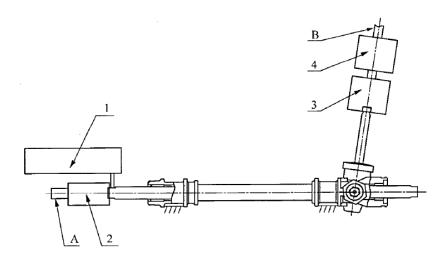
5.1.6.1 Transmission clearance of recirculating-ball steering gear.

Method 1: FIX the rocker arm shaft and the housing; LOAD a torque of $\pm 2N \cdot m$ on the input shaft end; MEASURE the difference of the input shaft rotation angle, which is the clearance of this point (used for exit-factory test).

Method 2: Connect angle sensors to the input shaft and rocker arm shaft, respectively. The connection is required to be free of gaps. ADD a load of 10N • m to the rocker arm shaft; at a speed of 10r/min ~ 15r/min, drive the input shaft forward. MEASURE the instantaneous corresponding angle values of the input shaft and the rocker arm shaft. Then at the same speed, reversely drive the input shaft, to measure the same data (see Figure 3).

1 - Torque sensor; 2, 3 - Angle sensor; A - Fixed or add ± 10N • m torque

Figure 3 -- Schematic diagram of test of recirculating-ball transmission clearance


M₁, M₂ - Input and output torque of rocker arm shaft, N • m;

W₁, W₂ - Input and output torque of input shaft, N • m.

5.1.7.2 Transmission efficiency of pinion-and-rack steering gear.

FIX the steering gear. Connect the torque sensor and angle sensor to the input shaft. Connect the force sensor and displacement sensor to the rack. The connection is required to be free of gaps. At a speed of 15r/min, drive the input shaft; MEASURE the torque and rotation angle, force and displacement. In reverse efficiency, according to the transmission ratio and the input shaft speed, the drive speed is converted into rack displacement speed. The test load is loaded according to the load efficiency curve required by the manufacturer. When not required, load according to the input shaft torque $4N \cdot m \sim 5N \cdot m$, see Figure 6 (during the test, the steering gear has no pull rod and dust cover).

REMOVE about 30° at both ends of the input shaft rotation angle data obtained by the test and remove the corresponding torque and force. According to formula (5) and formula (6), calculate the efficiency of each point. DRAW the curve of input shaft rotation angle and efficiency. Calculate the average efficiency within the range of \pm 180° in the middle and the average efficiency of the remaining rotation angles on both sides.

1 - Displacement sensor; 2 - Force sensor; 3 - Angle sensor; 4 - Torque sensor;

A - Drive or load along the reciprocating straight line direction; B - Drive or load along the clockwise and counterclockwise directions

Figure 6 -- Schematic diagram of test of efficiency of pinion-and-rack steering gear

The efficiency is calculated according to formula (5) and formula (6):

This is an excerpt of the PDF (Some pages are marked off intentionally)

Full-copy PDF can be purchased from 1 of 2 websites:

1. https://www.ChineseStandard.us

- SEARCH the standard ID, such as GB 4943.1-2022.
- Select your country (currency), for example: USA (USD); Germany (Euro).
- Full-copy of PDF (text-editable, true-PDF) can be downloaded in 9 seconds.
- Tax invoice can be downloaded in 9 seconds.
- Receiving emails in 9 seconds (with download links).

2. https://www.ChineseStandard.net

- SEARCH the standard ID, such as GB 4943.1-2022.
- Add to cart. Only accept USD (other currencies https://www.ChineseStandard.us).
- Full-copy of PDF (text-editable, true-PDF) can be downloaded in 9 seconds.
- Receiving emails in 9 seconds (with PDFs attached, invoice and download links).

Translated by: Field Test Asia Pte. Ltd. (Incorporated & taxed in Singapore. Tax ID: 201302277C)

About Us (Goodwill, Policies, Fair Trading...): https://www.chinesestandard.net/AboutUs.aspx

Contact: Wayne Zheng, Sales@ChineseStandard.net

Linkin: https://www.linkedin.com/in/waynezhengwenrui/

----- The End -----