Translated English of Chinese Standard: JB/T1255-2014

www.ChineseStandard.net

Sales@ChineseStandard.net

JB

# INDUSTRY STANDARD OF THE

PEOPLE'S REPUBLIC OF CHINA

J 11
Record Number:

JB/T 1255-2014

**Replacing JB/T 1255-2001** 

# Rolling Bearings - Parts Made from High-carbon Chromium Bearing Steels Specifications for Heat Treatment

滚动轴承 高碳铬轴承钢零件

热处理技术条件

# JB/T 1255-2014 How to BUY & immediately GET a full-copy of this standard?

- www.ChineseStandard.net;
- Search --> Add to Cart --> Checkout (3-steps);
- 3. No action is required Full-copy of this standard will be automatically & immediately delivered to your EMAIL address in  $0^2$ 5 minutes.
- Support: Sales@ChineseStandard.net. Wayne, Sales manager

Issued on: May 6, 2014 Implemented on: October 1, 2014

Issued by: Ministry of Industry and Information Technology of the People's Republic of China

# **Table of Contents**

| Fo  | preword                                                           | 3     |
|-----|-------------------------------------------------------------------|-------|
| 1   | Scope                                                             | 5     |
| 2   | Normative References                                              | 5     |
| 3   | Technical Requirements                                            | 6     |
| 4   | Test Method                                                       | 9     |
| Αŗ  | opendix A (Informative) Effective Wall Thickness of Ring and Effe | ctive |
| Di  | ameter of Rollers                                                 | 17    |
| Αŗ  | opendix B (Normative) Test Specifications for Crushing Load of    | Steel |
| Ba  | all and Crushing Load Values                                      | 19    |
| Αŗ  | opendix C (Informative) Decarburized Layer Depth of Bearing       | Parts |
| aft | ter Quenching and Tempering                                       | 22    |
| Αŗ  | opendix D (Informative) Allowable Deformation of Bearing Ring     | after |
| Qι  | uenching and Tempering                                            | 23    |
| Αŗ  | opendix E (Informative) Residual Austenite Content of Bearing     | Parts |
| aft | ter Quenching and Tempering                                       | 26    |
| Αŗ  | opendix F (Normative) Hardness Correction of Curved Surface       | 27    |
| Αŗ  | opendix G (Normative) Acid Cleaning Inspection Specifications     | 29    |

## **Foreword**

This standard is drafted according to the rules given in GB/T 1.1-2009.

This standard replaces JB/T 1255-2001 Specification for Heat-treatment of Rolling Bearing Parts Made from High Carbon Chromium Steel.

Compared with JB/T 1255-2001, except editorial changes, this standard has the main technical changes as follows:

- The standard name is modified (see cover and first page of this edition; cover and first page of 2001 edition);
- Scope is partially modified (see Chapter 1 of this edition; Chapter 1 of 2001 edition);
- Technical requirements after spheroidizing annealing are modified (see Table 1 of this edition, Table 1 of 2001 edition);
- The hardness of partial bearing parts Martensite after quenching and tempering is modified (see Table 2 of this edition; Table 2 of 2001 edition);
- The requirements for microscopic structure of partial bearing parts Martensite after quenching and tempering are modified (see Table 4 of this edition; Table 4 of 2001 edition);
- The technical requirements of GCr15SiMo Bainite after isothermal quenching are added (see Table 5 of this edition);
- The technical requirements of bearing parts Bainite after isothermal quenching are modified (see Table 5 of this edition; Table 5 of 2001 edition);
- The technical requirements and test methods for residual austenite content and appearance quality are added (see Table 6 and Table 7 of this edition);
- The technical requirements, test methods as well as grade figures for fractures after quenching and tempering of bearing parts Martensite are deleted (see Table 5, Table 7 and Fifth Grade Figure of 2001 edition);
- The test of microscopic structure after 1000\* magnification is added (Table 7 of 2001 edition);
- The grade figures of annealed, quenched and tempered structure under 500 times of magnification are modified and the grade figures under 500\* magnification are added (see First and Second Grade Figures of this edition;

# Rolling Bearings - Parts Made from High-carbon Chromium Bearing Steels Specifications for Heat Treatment

# 1 Scope

This standard specifies the technical requirements and test methods of the annealed, quenched and tempered rolling bearing ring and rolling element (hereinafter referred to as "bearing parts") made from GCr15, GCr15SiMn, GCr15SiMo and GCr18Mo steels which meet those specified in GB/T 18254-2002.

This standard is applicable to the heat treatment quality test of bearing parts during process and finished parts made from above-mentioned steels and also applicable to the heat treatment quality test of bearing parts made from other high-carbon chromium steels. The bearing parts with special requirements shall be in accordance with corresponding product drawings.

# 2 Normative References

The following referenced documents are indispensable for the application of this document. For dated references, only the dated editions apply. For undated references, the latest editions (including any amendments) apply.

| GB/T 230.1  | Metallic Materials - Rockwell Hardness Test - Part 1: Test method (scales A, B, C, D, E, F, G, H, K, N, T) |
|-------------|------------------------------------------------------------------------------------------------------------|
| GB/T 231.1  | Metallic Materials - Brinell Hardness Test - Part 1: Test Method                                           |
| GB/T 1172   | Conversion of Hardness and Strength for Ferrous Metal                                                      |
| GB/T 4340.1 | Metallic Materials - Vickers Hardness - Part 1: Test Method                                                |
| GB/T 6394   | Metal - methods for Estimating the Average Grain Size                                                      |
| GB/T 17394  | Metallic Materials - Leeb Hardness Test                                                                    |
| GB/T 18254  | High-carbon Chromium Bearing Steel                                                                         |
| GB/T 24606  | Rolling Bearings - Non-destructive Testing - Magnetic Particle Testing                                     |

| Effective wall    | _  | 12 | 63 | 60~65 | 59~64  | 57~62  | 55~59 |    |    |
|-------------------|----|----|----|-------|--------|--------|-------|----|----|
| thickness of      | 12 | 30 | 62 | 59~64 | 57~62  | 56~60  | 54~58 |    |    |
| ring <sup>a</sup> | 30 | _  | 60 | 58~63 | 56~61  | 55~59  | 53~57 |    |    |
| Nominal           | _  | 30 | 64 | 61~66 | 60~65° | 58~63° | 56~60 |    |    |
| diameter of       | 30 | 50 | 62 | 59~64 | 58~63° | 57~61  | 55~59 | 52 | 48 |
| steel ball        | 50 | _  | 61 | 58~64 | 57~62° | 56~60  | 54~58 |    |    |
| Effective         | _  | 20 | 64 | 61~66 | 60~65° | 58~63° | 56~60 |    |    |
| diameter of       | 20 | 40 | 63 | 59~65 | 58~63° | 57~61  | 55~59 |    |    |
| rollera           | 40 | _  | 61 | 58~64 | 57~62° | 57~60  | 54~58 |    |    |

Note: The division of dimension section and corresponding hardness requirements may be determined through negotiation between the manufacturer and user according to the working conditions and performance requirements of bearings.

- <sup>a</sup> See Appendix A for the requirements of effective wall thickness of ring and effective diameter of roller, the same below.
- The codes for high-temperature tempering temperature 200°C, 250°C, 300°C, 350°C and 400°C as well as the hardness requirements after tempering are corresponding to the high-temperature tempering codes S0, S1, S2, S3 and S4 specified in Table 9 of JB/T 2974-2004 respectively.
- Without special requirements, the rolling element may not be subjected to high-temperature tempering, and the hardness value is hardness after routine tempering.

Table 3 Hardness Difference of the Same Bearing Part after Quenching and Tempering of Martensite

| Parts name                 |      | Ring (outside diameter)<br>mm |     |     | (effective | element<br>diameter)<br>ım | Miniature bearing parts |
|----------------------------|------|-------------------------------|-----|-----|------------|----------------------------|-------------------------|
| Finished size              | >    | _                             | 100 | 400 | _          | 22                         |                         |
| mm                         | ≤    | 100                           | 400 | _   | 22         | _                          | _                       |
| Hardness difference<br>HRC | max. | 1                             | 2   | 3   | I          | 2                          | Without inspection      |

#### 3.2.2 Microscopic structure

The microscopic structure of bearing parts after quenching and tempering of Martensite shall be composed of cryptocrystal, tiny crystals or small acicular Martensite, evenly distributed tiny residual carbide and small quantity of residual austenite, besides micro bearing, a small quantity of acicular or massive Troostite is allowed. The microscopic structure after quenching and tempering shall be in accordance with those specified in Table 4.

Table 4 Microscopic Structure of Bearing Parts after Quenching and Tempering

|           |          | Fi             | nished size/mm | า           | Microscopic structure |                                             |  |
|-----------|----------|----------------|----------------|-------------|-----------------------|---------------------------------------------|--|
| Tolerance | Parts    | Effective wall | Nominal        | Effective   | Martensite            | Tree stite (Third Cond Figure)              |  |
| grade     | material | thickness of   | diameter of    | diameter of | (Second Grade         | Troostite (Third Grade Figure) <sup>b</sup> |  |
|           |          | ring           | steel ball     | roller      | Figure)               | ≤                                           |  |

| Test items                                           | Test method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                      | for test. The microscopic structure may be tested under quenched state, if there is any objection, it is tested under tempered state;  d) The troostitic structure after quenching and tempering shall be tested according to shape, dimension and quantity of Troostite in accordance with Third Grade Figure. The acicular or massive Troostite are tested according to corresponding grade figures for Troostite, and the acicular and massive-mixed Troostite is tested according to morphotype of Troostite accounting for main portion below field of view;  e) The Bainite structure shall be tested according to degree of thickness, dimension and quantity of residual carbide particles for Bainite in accordance with Fifth Grade Figure. |
| Network carbide                                      | It shall be magnified 500 times with metallographic microscope for test. The annealed specimen is tested on cross section after normal quenching and tempering, 4% solution of nitric acid and alcohol is adopted for deep etching, and the test is according to dimension of carbide net and sealing degree in accordance with Fourth Grade Figure.                                                                                                                                                                                                                                                                                                                                                                                                  |
| Decarburized layer<br>depth and surface<br>soft spot | <ul> <li>a) Surface decarburization and soft spot may be tested with cold pickling, and see Appendix G for the test regulations;</li> <li>b) The decarburized layer depth shall be measured according to those specified in JB/T 7362. For hot upset steel ball, the grinding surface of specimen shall be perpendicular to hoop, if measured with metallographic method, 2% solution of nitric acid and alcohol shall be adopted for etching under annealing condition and 4% solution of nitric acid and alcohol shall be adopted for etching under quenching and tempering condition;</li> <li>c) The decarburized layer depth shall be measured at the deepest decarburized part.</li> </ul>                                                      |
| Cracks                                               | It shall be tested according to those specified in GB/T 24606 and may also be tested with cool or hot pickling (see Appendix G) and other instruments and methods. If there is any objection, it is tested with hot pickling method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Crushing load of steel ball                          | It shall be tested according to those specified in Appendix B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Deformation of ring                                  | The deformation of small-dimension ring shall be inspected with dial indicator, passimeter, passatest and flatness instrument; the deformation of large-dimension ring shall be inspected with dial-gauge, bridge leveling ruler and feeler gauge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Temper stability                                     | The hardness difference between corresponding points before and after tempering is inspected after retempering of tested specimen or parts according to specification of former tempering technique.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Average grain size                                   | It shall be test according to those specified in GB/T 6394.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Residual austenite content                           | It shall be measure with X-ray diffraction (XRD) method or magnetic method; if there is any objection, it is measured with X-ray diffraction (XRD) method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Appearance quality                                   | Visual inspection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

# www.ChineseStandard.net --> Buy True-PDF --> Auto-delivered in 0~10 minutes. JB/T 1255-2014

from H/3 of the inner ring surface (H is a half the difference between the inside diameter and outside diameter); in I)~n),  $B_e$  is wall thickness from H/3 of ring on large end face (H is the width of ring); In o)~p),  $B_e$  is the wall thickness from H/3 on ring face (H is the width of ring); in q),  $B_e$  and  $D_s$  are thickness and diameter of ring at the circle of contact; in r) and s),  $B_e$  is the wall thickness at rolling surface of ring.

Figure A.1 Schematic Diagram for Effective Wall Thickness of Ring and Effective Diameter of Roller

# Appendix B

# (Normative)

# Test Specifications for Crushing Load of Steel Ball and Crushing Load Values

#### B.1 Scope

This Appendix specifies the test specifications for crushing load of ø3mm~ø50.8mm steel balls and their crushing load values.

#### B.2 Test specifications for crushing load of steel ball

- **B.2.1** Take three groups of heat treated steel balls (nine) from each batch for the crushing load test and the steel balls shall have the same dimension tolerance.
- **B.2.2** When the heat treated rerolled steel balls are subjected to the crushing test, the steel ball surface shall be free from grinding wheel defects, stain, bump or hard spots, etc.
- **B.2.3** In the crushing test, loading speed may be according to 980N/s~5880N/s.
- **B.2.4** In steel ball crushing test, if the applied loads are over the limit, the steel balls shall be unloaded even though they are not crushed; where there are special requirements, the steel balls may be loaded until they are crushed.
- **B.2.5** Take down the ball mould from the tester, open the protecting casing and take the balls out into the covered iron case for fear that the steel ball is crushed to do harm to the people and record the test results.
- **B.2.6** During the test, the inaccurate results, caused by shedding of balls at improper position or the cracked balls, shall be cancelled and the sample shall be retaken for the test.
- **B.2.7** If the crushing load has reached the specified standard during the test, while steel balls crush during the unloading, the results shall be regarded as qualified.
- **B.2.8** In the test, loading speed shall not be suddenly changed; midway unloading is not allowed.
- **B.2.9** The tester will vibrate greatly with pointer bounced and reading inaccurate when the steel balls crush; the attention shall be paid to the load reading when the

# www.ChineseStandard.net --> Buy True-PDF --> Auto-delivered in 0~10 minutes. JB/T 1255-2014

steel balls are about to crush.

**B.2.10** The crushing mould is so designed to suit the steel ball size, at an angle of 90°; the mould may be made of tool carbon steel or bearing steel and has 60HRC~65HRC hardness after quenching and tempering.

# B.3 Crushing load values of steel ball

See Table B.1 for crushing load values of steel ball.

# **Appendix C**

(Informative)

# Decarburized Layer Depth of Bearing Parts after Quenching and Tempering

See Table C.1 for decarburized layer depth of bearing parts after quenching and tempering.

Table C.1 Decarburized Layer Depth of Bearing Parts After Quenching and Tempering

|                               | Ring                                                                                 |                   |         | Steel ba | all                | Roller           |    |              |  |
|-------------------------------|--------------------------------------------------------------------------------------|-------------------|---------|----------|--------------------|------------------|----|--------------|--|
| Nominal diameter <sup>a</sup> |                                                                                      | Decarburized      |         |          | Decarburized layer |                  |    | Decarburized |  |
|                               |                                                                                      | layer depth       | Nominai | diameter | depth              | Nominal diameter |    | layer depth  |  |
| mm mm mm                      |                                                                                      | mm                | mm      |          | mm                 |                  |    |              |  |
| >                             | ≤                                                                                    | max. > ≤ max. > ≤ |         | ≤        | max.               |                  |    |              |  |
| _                             | 30                                                                                   | 0.03              | _       | 19.05    | 0.05               | _                | 20 | 0.03         |  |
| 30                            | 180                                                                                  | 0.05              | 19.05   | 30.1625  | 0.06               | 20               | 50 | 0.05         |  |
| 180                           | 250                                                                                  | 0.06              | 30.1625 | 42.8625  | 0.08               | 50               | 80 | 0.08         |  |
| 250                           | 500                                                                                  | 0.15              | 42.8625 | 76.2     | 0.12               | 80               | _  | 0.10         |  |
| 500                           | _                                                                                    | 0.20              | 76.2    | _        | 0.15               |                  |    |              |  |
| a Namai                       | Naminal incide dispersion of inner sing or naminal suitaide dispersion of outer sing |                   |         |          |                    |                  |    |              |  |

# **Appendix D**

(Informative)

# Allowable Deformation of Bearing Ring after Quenching and Tempering

See Table D.1~Table D.4 for allowable deformation of bearing ring after quenching and tempering.

Table D.1 Allowable Variation of Outside Diameter  $V_{\rm Dsp}$  and Outside Diameter Allowance of Bearing Outer Ring after Quenching and Tempering

|                 |       |                 | •                          |                                  |           |          |  |
|-----------------|-------|-----------------|----------------------------|----------------------------------|-----------|----------|--|
| Nominal outside |       |                 |                            |                                  | Outside   | diameter |  |
|                 |       | Diameter series | Diamatan assisa 0 0 0 1    | Dimension series 08, 09, 00, 01, | allowance |          |  |
| dia             | meter | 2, 3, 4         | Diameter series 8, 9, 0, 1 | 82, 83                           | (recon    | nmended  |  |
|                 |       |                 |                            |                                  | value)    |          |  |
| >               | ≤     |                 |                            | min.                             | max.      |          |  |
| _               | 30    | 0.06            | 0.08                       | 0.10                             | 0.15      | 0.25     |  |
| 30              | 80    | 0.12            | 0.16                       | 0.18                             | 0.20      | 0.30     |  |
| 80              | 150   | 0.20            | 0.25                       | 0.30                             | 0.30      | 0.45     |  |
| 150             | 200   | 0.25            | 0.30                       | 0.35                             | 0.35      | 0.55     |  |
| 200             | 250   | 0.30            | 0.40                       | 0.50                             | 0.50      | 0.70     |  |
| 250             | 315   | 0.45            | 0.55                       | 0.65                             | 0.65      | 0.85     |  |
| 315             | 400   | 0.50            | 0.60                       | 0.70                             | 0.80      | 1.10     |  |
| 400             | 500   | 0.65            | 0.70                       | 0.85                             | 1.10      | 1.30     |  |
| 500             | 630   | 0.80            | 0.85                       | 1.00                             | 1.20      | 1.55     |  |

Table D.4 Allowable Diameter Deformation  $V_{\rm dsp}$ , Planeness Ape and Height Allowance of Thrust Bearing Gasket and Spacer after Quenching And Tempering mm

|      | minal Diameter series 2, 3, 4 gasket Diameter series 0, 1 gasket Spacer          |           |                                                       |      |              |                                            |      |             |              |                                            |      |             |      |
|------|----------------------------------------------------------------------------------|-----------|-------------------------------------------------------|------|--------------|--------------------------------------------|------|-------------|--------------|--------------------------------------------|------|-------------|------|
| >    | ≤                                                                                | $V_{Dsp}$ | V <sub>Dsp</sub> Height allowance (recommended value) |      | $V_{ m Dsp}$ | Height allowance<br>(recommended<br>value) |      | <i>A</i> pe | $V_{ m Dsp}$ | Height allowance<br>(recommended<br>value) |      | <i>A</i> pe |      |
|      |                                                                                  | max.      | min.                                                  | max. | max.         | max.                                       | min. | max.        | max.         | max.                                       | min. | max.        | max. |
| 30   | 50                                                                               | 0.15      | 0.30                                                  | 0.40 | 0.15         | 0.15                                       | 0.35 | 0.45        | 0.20         | _                                          | _    | _           | _    |
| 50   | 80                                                                               | 0.25      | 0.35                                                  | 0.45 | 0.25         | 0.25                                       | 0.40 | 0.50        | 0.35         | _                                          | _    | _           | _    |
| 80   | 120                                                                              | 0.25      | 0.40                                                  | 0.52 | 0.35         | 0.35                                       | 0.45 | 0.57        | 0.35         | 1.0                                        | 0.50 | 0.65        | 0.45 |
| 120  | 180                                                                              | 0.30      | 0.45                                                  | 0.57 | 0.40         | 0.40                                       | 0.50 | 0.62        | 0.45         | 1.0                                        | 0.60 | 0.75        | 0.55 |
| 180  | 250                                                                              | 0.35      | 0.50                                                  | 0.65 | 0.45         | 0.45                                       | 0.60 | 0.75        | 0.55         | 1.0                                        | 0.80 | 1.00        | 0.70 |
| 250  | 300                                                                              | 0.40      | 0.60                                                  | 0.78 | 0.55         | 0.55                                       | 0.80 | 0.98        | 0.70         | 1.2                                        | 0.90 | 1.10        | 0.80 |
| 300  | 400                                                                              | 0.45      | 0.70                                                  | 0.90 | 0.65         | 0.65                                       | 0.90 | 1.10        | 0.75         | 1.2                                        | 1.00 | 1.25        | 0.90 |
| 400  | 500                                                                              | 0.55      | 0.80                                                  | 1.00 | 0.70         | 0.70                                       | 1.00 | 1.20        | 0.85         | 1.2                                        | 1.20 | 1.45        | 1.10 |
| 500  | 600                                                                              | 0.60      | 0.90                                                  | 1.15 | 0.80         | 0.80                                       | 1.05 | 1.35        | 0.95         | 1.5                                        | 1.40 | 1.70        | 1.20 |
| a No | Nominal inside diameter of inner ring or nominal outside diameter of outer ring. |           |                                                       |      |              |                                            |      |             |              |                                            |      |             |      |

# Appendix E

(Informative)

# Residual Austenite Content of Bearing Parts after Quenching and Tempering

See Table E.1 for residual austenite content of bearing parts after quenching and tempering.

Table E.1 Residual Austenite Content of Bearing Parts After Quenching And Tempering.

| Bearing tolerance class                                                                                               | P2, P4 | P0, P5, P6, P6X |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|--------|-----------------|--|--|--|--|
| Residual austenite content                                                                                            | ≤5%    | ≤15%            |  |  |  |  |
| Note: The residual austenite content, subjected to special heat treatment, may be subject to the users' requirements. |        |                 |  |  |  |  |

# Appendix G

# (Normative)

# **Acid Cleaning Inspection Specifications**

## G.1 Cold pickling

This specification is used to inspect the surface soft spot, decarbonization and parts cracks after quenching and tempering. Before acid cleaning, the parts shall be subjected to sand blasting and degreasing cleaning to clean surface scale and oil stain. The cold pickling is carried out at room temperature.

## G.1.1 Cold pickling process flow

## G.1.1.1 Pickling treatment

Place the bearing parts into 6%~30% (volume ratio) nitric acid water solution pickling tank for 1min and wash them in the flowing cold water tank for 1~2min.

The nitric acid concentration in the tank is only for reference and may be adjusted according to the surface darkness and dimension consumption of the parts after acid cleaning. The nitric acid concentration may adopt 6% when the acid cleaned parts surface is subjected to decarbonization.

## G.1.1.2 First purifying treatment

In the first purifying tank, purify the acid cleaned parts for 10s~20s and wash them in the flowing cold water tank for 1~2min. The mixture ratio of purifying tank solution composition may select any one in Table G.1.

Table G.1 Mixture Ratio of Solution Composition in the First Purifying Tank

|                        | Туре      |           |  |  |  |  |
|------------------------|-----------|-----------|--|--|--|--|
| Chemical composition   | 1         | 2         |  |  |  |  |
|                        | Volum     | ne ratio  |  |  |  |  |
| Phosphoric acid        | _         | 10%~15%   |  |  |  |  |
| Sodium hydroxide       | 3%~5%     | _         |  |  |  |  |
| Potassium permanganate | 3%~5%     | 3%~5%     |  |  |  |  |
| Trisodium phosphate    | 6%~9%     | _         |  |  |  |  |
| Sulfuric acid          | _         | _         |  |  |  |  |
| Water                  | Allowance | Allowance |  |  |  |  |

## G.1.1.3 Second purifying treatment

# www.ChineseStandard.net --> Buy True-PDF --> Auto-delivered in 0~10 minutes. JB/T 1255-2014

- a) Qualified surface: uniform and consistent dark gray;
- b) Surface soft spot: loud-shape dark black spot, and the periphery is incomplete;
- c) Decarburization: grey-white or dark black stain;
- d) Crack: dark black smaller-strips.

#### G.2 Hot pickling

This specification is used to inspect the surface crack of bearing parts after quenching and tempering. Before acid cleaning, the parts shall be subjected to sand blasting and degreasing cleaning to clean surface scale and oil stain.

- **G.2.1** The bearing parts shall be subjected to stress tempering before hot pickling and the tempering temperature shall be greater than 350°C for 2h~3h.
- **G.2.2** Place the bearing parts into 50% hydrochloric acid water solution, heat the solution to 60°C±5°C for pickling 10~30min and then wash them in the flowing cold water tank for 1~2min.
- **G.2.3** The parts subjected to hot pickling shall be observed under floodlight immediately after being dried.

| END |
|-----|
|-----|

# This is an excerpt of the PDF (Some pages are marked off intentionally)

# Full-copy PDF can be purchased from 1 of 2 websites:

# 1. https://www.ChineseStandard.us

- SEARCH the standard ID, such as GB 4943.1-2022.
- Select your country (currency), for example: USA (USD); Germany (Euro).
- Full-copy of PDF (text-editable, true-PDF) can be downloaded in 9 seconds.
- Tax invoice can be downloaded in 9 seconds.
- Receiving emails in 9 seconds (with download links).

# 2. <a href="https://www.ChineseStandard.net">https://www.ChineseStandard.net</a>

- SEARCH the standard ID, such as GB 4943.1-2022.
- Add to cart. Only accept USD (other currencies https://www.ChineseStandard.us).
- Full-copy of PDF (text-editable, true-PDF) can be downloaded in 9 seconds.
- Receiving emails in 9 seconds (with PDFs attached, invoice and download links).

Translated by: Field Test Asia Pte. Ltd. (Incorporated & taxed in Singapore. Tax ID: 201302277C)

About Us (Goodwill, Policies, Fair Trading...): <a href="https://www.chinesestandard.net/AboutUs.aspx">https://www.chinesestandard.net/AboutUs.aspx</a>

Contact: Wayne Zheng, Sales@ChineseStandard.net

Linkin: <a href="https://www.linkedin.com/in/waynezhengwenrui/">https://www.linkedin.com/in/waynezhengwenrui/</a>

----- The End -----