Translated English of Chinese Standard: GB/T4698.17-2019

<u>www.ChineseStandard.net</u> → Buy True-PDF → Auto-delivery.

Sales@ChineseStandard.net

GB

NATIONAL STANDARD OF THE PEOPLE'S REPUBLIC OF CHINA

ICS 77.120.50

H 14

GB/T 4698.17-2019

Replacing GB/T 4698.17-1996

Methods for chemical analysis of titanium sponge, titanium and titanium alloys -- Part 17: Determination of magnesium content - Flame atomic absorption spectrometry

海绵钛、钛及钛合金化学分析方法 第 17 部分:镁量的测定 火焰原子吸收光谱法

Issued on: June 04, 2019 Implemented on: May 01, 2020

Issued by: State Administration for Market Regulation;

Standardization Administration of the People's Republic of China.

Table of Contents

Foreword	3
1 Scope	6
2 Normative references	6
3 Principle	6
4 Reagents	6
5 Equipment	7
6 Sample	8
7 Test steps	8
8 Test data processing	9
9 Precision	10
10 Test report	10

Foreword

GB/T 4698 "Methods for chemical analysis of titanium sponge, titanium and titanium alloys" consists of the following parts:

- -- Part 1: Determination of copper content Flame atomic absorption spectrometry;
- -- Part 2: Determination of iron content,
- -- Part 3: Determination of silicon content Molybdenum blue spectrophotometry;
- -- Part 4: Determination of manganese content-Potassium periodate spectrophotometry and inductively coupled plasma atomic emission spectrometry;
- -- Part 5: Determination of molybdenum content Thiocyanate spectrophotometry and inductively coupled plasma atomic emission spectrometry;
- -- Part 6: Determination of boron content Methylene blue spectrophotometry and inductively coupled plasma atomic emission spectrometry;
- -- Part 7: Determination of oxygen and nitrogen content,
- -- Part 8: Determination of aluminum content Separation with sodium hydroxide-EDTA complex-metric titration and inductively coupled plasma atomic emission spectrometry;
- -- Part 9: Determination of tin content Potassium iodate titration and inductively coupled plasma atomic emission spectrometry,
- -- Part 10: Determination of chromium content Ammonium ferrous sulfate titration and inductively coupled plasma atomic emission spectrometry (with vanadium;
- -- Part 11: Determination of chromium content in the absence of Vanadium Ammonium ferrous sulfate titration method:
- -- Part 12: Determination of vanadium content Ammonium ferrous sulfate titration and inductively coupled plasma atomic emission spectrometry;
- -- Part 13: Determination of zirconium content EDTA complexometric titration and inductively coupled plasma atomic emission spectrometry;
- -- Part 14: Determination of carbon content.

- -- Part 15: Determination of hydrogen content,
- -- Part 16: Determination of oxygen content Inert gas fusion coulometric method;
- -- Part 17: Determination of magnesium content Flame atomic absorption spectrometry;
- -- Part 18: Determination of tin content Flame atomic absorption spectrometry;
- -- Part 19: Determination of molybdenum content Thiocyanate-differential spectrophotometry;
- -- Part 20: Determination of manganese content Potassium periodate spectrophotometric method;
- -- Part 21: Determination of manganese, chromium, nickel, aluminum, molybdenum, tin, vanadium, yttrium, copper and zirconium content Atomic emission spectrometry;
- -- Part 22: Determination of niobium content 5-Br-PADAP spectrophotometry and inductively coupled plasma atomic emission spectrometry;
- -- Part 23: Determination of palladium content Stannous chloride-potassium iodide spectrophotometry and inductively coupled plasma atomic emission spectrometry;
- -- Part 24: Determination of nickel content Dimethylglyoxime spectrophotometry and inductively coupled plasma atomic emission spectrometry;
- -- Part 25: Determination of chlorine content Silver chlorin spectrophotometry;
- -- Part 26: Determination of alloying elements and impurity elements Inductively coupled plasma atomic emission spectrometry;
- -- Part 27: Determination of neodymium content Inductively coupled plasma atomic emission spectrometry;
- -- Part 28: Determination of ruthenium content Inductively coupled plasma atomic emission spectrometry;
- -- Part 29: Determination of tungsten and tantalum Inductively coupled plasma atomic emission spectrometry.

Methods for chemical analysis of titanium sponge, titanium and titanium alloys -- Part 17: Determination of magnesium content - Flame atomic absorption spectrometry

1 Scope

This Part specifies the determination method for magnesium content in titanium sponge, titanium and titanium alloys.

This Part is applicable to the determination of magnesium content in titanium sponge, titanium and titanium alloys. The determination range is 0.010%~1.00%.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

GB/T 31981, Methods of sampling and sample preparation for chemical composition analysis of titanium and titanium alloy

3 Principle

Use hydrochloric acid and hydrofluoric acid to dissolve test material. Use boric acid complexes fluoride ions and strontium chloride as release agents. Use airacetylene flame, at a wavelength of 285.2nm of atomic absorption spectrometer, to determine the magnesium content.

4 Reagents

Unless otherwise specified, the reagents used in this Part are analytical reagents and laboratory grade two water.

4.1 Hydrochloric acid (ρ=1.19g/mL).

- **4.2** Nitric acid (ρ =1.42g/mL).
- **4.3** Hydrofluoric acid (ρ=1.15g/mL).
- 4.4 Hydrochloric acid (1+1).
- 4.5 Nitric acid (1+1).
- 4.6 Hydrofluoric acid (1+1).
- 4.7 Saturated boric acid solution .
- **4.8** Strontium chloride solution (60mg/mL): Weigh 50g of strontium chloride (SrCl₂ · 6H₂O) in a 500mL beaker. Add 400mLof water to dissolve. Move into a 500mL volumetric flask. Use water to dilute to the scale. Shake well.
- **4.9** Magnesium standard storage solution: Weigh 0.1000g of metal magnesium (w_{Mg}≥99.99%) in a 250mL beaker. Add 30mL of water and 10mLof hydrochloric acid (4.4). Heat until they are completely dissolved. Cool to room temperature and move into a 1000mL volumetric flask. Use water to dilute to the scale. Shake well. 1mL of this solution contains 100µg of magnesium.
- **4.10** Magnesium standard solution: Move 10.00mLof magnesium standard storage solution (4.9) in a 100mL volumetric flask. Add 2mL of hydrochloric acid (4.4). Use water to dilute to the scale. Shake well. 1mL of this solution contains 10µg of magnesium.

5 Equipment

Atomic absorption spectrometer, with magnesium hollow cathode lamp.

Under the optimal working conditions of the instrument, anyone that can meet the following indicators can be used:

- Characteristic concentration: In a solution consistent with the measurement solution matrix, the characteristic concentration of magnesium shall not be greater than 0.02µg/mL;
- -- Precision: Use the highest concentration standard solution to measure absorbance 10 times. The standard deviation shall not exceed 1.0% of the average absorbance. Use the lowest concentration standard solution (not "zero" concentration standard solution) to measure absorbance 10 times. The standard deviation shall not exceed 0.5% of the average absorbance of the highest concentration;
- -- Working curve linear: Divide the working curve into five segments by concentration. The ratio of the absorbance difference between the highest

This is an excerpt of the PDF (Some pages are marked off intentionally)

Full-copy PDF can be purchased from 1 of 2 websites:

1. https://www.ChineseStandard.us

- SEARCH the standard ID, such as GB 4943.1-2022.
- Select your country (currency), for example: USA (USD); Germany (Euro).
- Full-copy of PDF (text-editable, true-PDF) can be downloaded in 9 seconds.
- Tax invoice can be downloaded in 9 seconds.
- Receiving emails in 9 seconds (with download links).

2. https://www.ChineseStandard.net

- SEARCH the standard ID, such as GB 4943.1-2022.
- Add to cart. Only accept USD (other currencies https://www.ChineseStandard.us).
- Full-copy of PDF (text-editable, true-PDF) can be downloaded in 9 seconds.
- Receiving emails in 9 seconds (with PDFs attached, invoice and download links).

Translated by: Field Test Asia Pte. Ltd. (Incorporated & taxed in Singapore. Tax ID: 201302277C)

About Us (Goodwill, Policies, Fair Trading...): https://www.chinesestandard.net/AboutUs.aspx

Contact: Wayne Zheng, Sales@ChineseStandard.net

Linkin: https://www.linkedin.com/in/waynezhengwenrui/

---- The End -----