Translated English of Chinese Standard: GB/T43254-2023

<u>www.ChineseStandard.net</u> → Buy True-PDF → Auto-delivery.

<u>Sales@ChineseStandard.net</u>

GB

NATIONAL STANDARD OF THE PEOPLE'S REPUBLIC OF CHINA

ICS 43.040 CCS T 35

GB/T 43254-2023

Functional safety requirements and testing methods for drive motor system of electric vehicles

电动汽车用驱动电机系统功能安全要求及试验方法

Issued on: November 27, 2023 Implemented on: June 01, 2024

Issued by: State Administration for Market Regulation; Standardization Administration of PRC.

Table of Contents

Foreword	3
1 Scope	5
2 Normative references	5
3 Terms and definitions	5
4 General requirements	6
5 Definition of related items	6
5.1 General requirements	6
5.2 Functional concept	6
5.3 Operating conditions and environmental constraints	7
6 Hazard analysis and risk assessment	7
6.1 General	7
6.2 Safety objectives	7
7 Functional safety requirements	8
7.1 Prevent the motor from being unable to output driving torque	8
7.2 Prevent the motor from unexpectedly outputting excessive driving torque	10
7.3 Prevent the motor torque output direction from being reversed	12
7.4 Prevent the motor from unexpectedly outputting driving torque	14
7.5 Prevent the motor from being unable to output braking torque	15
7.6 Prevent the unexpected output braking torque of the motor from being too large	17
7.7 Prevent the motor from unexpectedly outputting braking torque	19
8 Functional safety verification and validation	21
8.1 General requirements	21
8.2 Functional safety verification.	21
8.3 Functional safety confirmation.	31
Appendix A (Informative) Example of hazard analysis and risk assessment (HA	RA)
involving drive motor systems	
A.1 Definition of related items	40
A.2 Hazard identification of related items at the vehicle level	42
A.3 Scenario analysis	
A.4 Derivation of ASIL levels	
A.5 Safety objectives and safety status	73
Appendix B (Informative) Example of how to determine fault tolerance time inte	
(FTTI)	
B.1 Definition of fault tolerance time interval	
B.2 Example of definition of fault of unexpected motor output drive torque FTTI	
References	77

Functional safety requirements and testing methods for drive motor system of electric vehicles

1 Scope

This document specifies the functional safety requirements and test methods for drive motor systems for electric vehicles (hereinafter referred to as "drive motor systems").

This document is applicable to drive motor systems for electric vehicles. Other types of drive motor systems shall be implemented with reference to this document.

2 Normative references

The contents of the following documents constitute essential provisions of this document through normative references in the text. Among them, for dated referenced documents, only the version corresponding to that date applies to this document; for undated referenced documents, the latest version (including all amendments) applies to this document.

GB 18384-2020 Electric vehicles safety requirements

GB/T 18488 (all parts) Drive motor system for electric vehicles

GB/T 34590.1 ~ 34590.12-2022 Road vehicles - Functional safety

3 Terms and definitions

The terms and definitions as defined in GB/T 34590.1-2022, as well as the following terms and definitions, apply to this document.

3.1

Drive motor system

It is a system, which is installed on electric vehicles to provide driving force for vehicle driving and realize the mutual conversion between mechanical energy and electrical energy.

Note: It includes drive motor, drive motor controller, and auxiliary devices necessary for their work. The auxiliary device includes a transmission device integrated with the drive motor.

7.3.4 Entry and exit of safe state

When it is confirmed that a fault related to the reverse direction of the drive motor's torque output occurs, the drive motor system enters a safe state by issuing a fault warning and terminating the torque output. If the fault related to the reverse direction of the drive motor's torque output is exited or shall not be exited.

Note: Fault exit or elimination conditions are determined by the vehicle manufacturer and the drive motor system supplier, through negotiation.

7.3.5 Alarm and degrade concepts

When a fault related to the reverse direction of the drive motor's torque output occurs, the drive motor system shall feedback fault flag information.

7.4 Prevent the motor from unexpectedly outputting driving torque

7.4.1 General requirements

The vehicle controller unit (VCU) or other controllers (depending on the vehicle electronic architecture) shall ensure the correctness and completeness of signals, such as working mode requests and torque commands, as sent to the drive motor controller unit (MCU).

The drive motor system shall detect the correctness and completeness of these signals. When an abnormality is detected, the drive motor system shall perform reasonable fault handling to avoid violating safety objectives.

When the unintended output driving torque of the drive motor system is higher than the safety threshold, the drive motor system shall enter the safe state. When the relevant fault exit or elimination conditions are not met, the drive motor system shall not exit the safe state.

Note: The safety threshold of unexpected output drive torque is determined by the vehicle manufacturer and the drive motor system supplier through negotiation.

Fault detection, response, processing shall be completed within the FTTI time.

7.4.2 Operating mode

The drive motor system shall be in a non-driving working state and the vehicle shall be in a stationary state.

7.4.3 Fault tolerance time interval (FTTI)

The fault tolerance time interval for unexpected output drive torque, as shown in Figure 4, shall be given based on analysis, testing, etc.

7.6.4 Entry and exit of the safe state

When it is confirmed that a fault related to unexpected output braking torque is too large, the drive motor system shall enter a safe state by issuing a fault warning and terminating torque output. It shall not exit safety state, when the conditions to exit or eliminate the faults related to unexpected output braking torque being too large are not met.

Note: Fault exit or elimination conditions are determined by the vehicle manufacturer and the drive motor system supplier, through negotiation.

7.6.5 Alerting and degrade concepts

When an unexpected fault related to excessive output braking torque occurs, on the premise of ensuring that it can enter a safe state, the braking torque can be derated first. The drive motor system shall feedback fault flag information.

7.7 Prevent the motor from unexpectedly outputting braking torque

7.7.1 General requirements

The vehicle controller unit (VCU) or other controllers (depending on the vehicle electronic architecture) shall ensure the correctness and completeness of signals, such as working mode requests and torque commands, as sent to the drive motor controller unit (MCU).

The drive motor system shall detect the correctness and completeness of these signals. When an abnormality is detected, the drive motor system shall perform reasonable fault handling to avoid violating safety objectives.

When the braking torque unexpectedly output by the drive motor system is higher than the safety threshold, the drive motor system shall enter the safe state. When the relevant fault exit or elimination conditions are not met, the drive motor system shall not exit the safe state.

Note: The safety threshold of unexpected output braking torque is determined by negotiation between the vehicle manufacturer and the drive motor system supplier.

Fault detection, response, processing shall be completed within the FTTI time.

7.7.2 Operation mode

The drive motor system shall be in a non-braking working state and the vehicle shall be stationary.

7.7.3 Fault tolerance time interval (FTTI)

8 Functional safety verification and validation

8.1 General requirements

Functional safety verification is to determine the completeness and correctness of functional safety requirements. It shall be verified at the drive motor system level with the purpose of proving functional safety requirements:

- a) Consistency and compliance with the results of verification activities;
- b) Implementation correctness.

This document mainly provides functional safety verification methods based on testing; testing can be performed in a simulation environment. For testing in real environments, this document does not make specific requirements.

Functional safety confirmation is to confirm that safety objectives are fully achieved and that functions at the system and vehicle levels mitigate or avoid the occurrence of hazardous events. The achievement of functional safety objectives shall be confirmed at the drive motor system or vehicle level. The purposes include:

- a) Prove that the implementation of safety objectives at the vehicle level is correct, complete, fully realized;
- b) Safety objectives can prevent or mitigate hazardous events and risks identified in hazard analysis and risk assessment.

8.2 Functional safety verification

8.2.1 Prevent the motor from being unable to output driving torque

8.2.1.1 Test purpose

The drive motor system shall detect the output torque status. When the output drive torque is lower than the safety threshold, the drive motor system shall enter a safe state. When the fault exit or elimination conditions that cannot output drive torque are not met, the drive motor system shall not exit the safe state.

8.2.1.2 Test objects

The test object is the drive motor system.

8.2.1.3 Test requirements

- a) All equipment that affects the function of the test object and is related to the test results shall be in normal operation;
- b) The test shall be based on the operating mode specified in 7.1.2. The selected test operating points shall include at least the operating conditions of the motor in two quadrants (the two quadrants corresponding to the driving conditions); meanwhile typical operating points shall be selected in each quadrant, such as combinations of low torque and low speed, high torque and high speed, low torque and high speed, etc., to ensure the effectiveness of the safety mechanism;
- c) The test shall be carried out by injecting faults. The inability to output driving torque caused by the injected faults shall include at least three types: below the safety threshold, reaching the safety threshold, above the safety threshold;
- d) The test shall make the drive motor system enter a safe state and issue an alarm message;
- e) The test shall monitor the conditions, under which the drive motor system exits the safe state.

8.2.1.4 Test end conditions

When any of the following conditions are met, the test in the simulation environment ends:

- a) The test object enters the safe state within the fault tolerance time interval and does not exit the safe state accidentally;
- b) The test object does not enter a safe state within the fault tolerance time interval;
- c) The test object fails to send the correct alarm message;
- d) The test object enters the safe state within the fault tolerance time interval and exits the safe state unexpectedly.

8.2.1.5 Test passing criteria

The test passing criteria shall meet the following conditions at the same time:

- a) The test object enters the safe state after the fault is injected and does not exit the safe state accidentally, meanwhile the time interval from the fault injection to entering the safe state shall be less than or equal to the requirements for fault tolerance time interval;
- b) The test object issues the correct fault alarm message.

8.2.2 Prevent the motor from unexpectedly outputting excessive driving torque

d) The test object enters the safe state within the fault tolerance time interval and exits the safe state unexpectedly.

8.2.2.5 Test passing criteria

The test passing criteria shall meet the following conditions at the same time:

- a) The test object can enter the safe state after injecting a fault and does not exit the safe state accidentally; the time interval from the injected fault to entering the safe state shall be less than or equal to the fault tolerance time interval requirement;
- b) The torque of the test object, when it enters the safe state, meets the safety threshold required by the design;
- c) The test object issues the correct fault alarm message.

8.2.3 Prevent the motor torque output direction from being reversed

8.2.3.1 Test purpose

The drive motor system shall detect the output torque status. When the motor torque output direction is opposite to the requested direction, the drive motor system shall enter a safe state. When the fault exit or elimination conditions for the motor torque output direction are opposite to the requested direction are not met, it shall not exit the safe state.

8.2.3.2 Test objects

The test object is the drive motor system.

8.2.3.3 Test requirements

- a) All equipment that affects the function of the test object and is related to the test results shall be in normal operation;
- b) The test shall be based on the operating mode specified in 7.3.2. The selected test operating points shall include at least four quadrant operating conditions of the motor; typical operating points shall be selected in each quadrant, such as the combinations of low torque and low torque, high torque and high speed, low torque and high speed, etc., to ensure the effectiveness of the safety mechanism;
- c) The test shall be carried out by injecting faults. The torque reverse safety threshold caused by the injected fault shall include at least three types: below the safety threshold, reaching the safety threshold, above the safety threshold;
- d) The test shall monitor the process of the drive motor system entering a safe state

(such as safety threshold, time, state switching, alarm information);

e) The test shall monitor the conditions under which the drive motor system exits the safe state.

8.2.3.4 Test end conditions

When any of the following conditions are met, the test in the simulation environment ends:

- a) The test object enters the safe state within the fault tolerance time interval and does not exit the safe state accidentally;
- b) The test object does not enter a safe state within the fault tolerance time interval;
- c) The test object fails to send the correct alarm message;
- d) The test object enters the safe state within the fault tolerance time interval and exits the safe state unexpectedly.

8.2.3.5 Test passing criteria

The test passing criteria shall meet the following conditions at the same time:

- a) The test object can enter the safe state after injecting a fault and does not exit the safe state accidentally; the time interval from the injected fault to entering the safe state shall be less than or equal to the fault tolerance time interval requirement;
- b) The torque of the test object, when it enters the safe state, meets the safety threshold required by the design;
- c) The test object issues the correct fault alarm message.

8.2.4 Prevent the motor from unexpectedly outputting driving torque

8.2.4.1 Test purpose

The drive motor system shall detect the output torque status. When the unexpected output drive torque of the motor exceeds the safety threshold, the drive motor system shall enter a safe state. When the fault exit or elimination conditions of the unexpected output drive torque are not met, it shall not exit the safe state.

8.2.4.2 Test objects

The test object is the drive motor system.

8.2.4.3 Test requirements

8.2.5.1 Test purpose

The drive motor system shall detect the output torque status. When the output braking torque is lower than the safety threshold, the drive motor system shall enter a safe state. It shall not exit the safe status, when the conditions to exit or eliminate the fault that cannot output braking torque are not met.

8.2.5.2 Test objects

The test object is the drive motor system.

8.2.5.3 Test requirements

Testing in a simulated environment meets the following requirements:

- a) All equipment that affects the function of the test object and is related to the test results shall be in normal operation;
- b) The test shall be based on the operating mode specified in 7.5.2. The selected test operating points shall include at least the operating conditions of the motor in two quadrants (the two quadrants corresponding to the braking conditions); meanwhile the typical operating points shall be selected in each quadrant, such as combinations of low torque and low speed, high torque and high speed, low torque and high speed, etc., to ensure the effectiveness of the safety mechanism;
- c) The test shall be carried out by injecting faults. The inability to output braking torque caused by the injected faults shall include at least three types: below the safety threshold, reaching the safety threshold, above the safety threshold;
- d) The test shall make the drive motor system enter a safe state and issue an alarm message;
- e) The test shall monitor the conditions under which the drive motor system exits the safe state.

8.2.5.4 Test end conditions

When any of the following conditions are met, the test in the simulation environment ends:

- a) The test object enters the safe state within the fault tolerance time interval and does not exit the safe state accidentally;
- b) The test object does not enter a safe state within the fault tolerance time interval;
- c) The test object fails to send the correct alarm message;
- d) The test object enters the safe state within the fault tolerance time interval and

exits the safe state unexpectedly.

8.2.5.5 Test passing criteria

The test passing criteria shall meet the following conditions at the same time:

- a) The test object enters a safe state after injecting a fault and does not accidentally exit the safe state; the time interval from the injected fault to entering the safe state shall be less than or equal to the fault tolerance time interval requirements;
- b) The test object issues the correct fault alarm message.

8.2.6 Prevent the unexpected output braking torque of the motor from being too large

8.2.6.1 Test purpose

The drive motor system shall detect the output torque status. When the output braking torque exceeds the safety threshold, the drive motor system shall enter a safe state. It shall not exit the safe state, when the conditions to exit or eliminate the fault of unexpected output braking torque being too large are not met.

8.2.6.2 Test objects

The test object is the drive motor system.

8.2.6.3 Test requirements

- a) All equipment that affects the function of the test object and is related to the test results shall be in normal operation;
- b) The test shall be based on the operating mode specified in 7.6.2. The selected test operating points shall include the operating conditions of the motor in two quadrants (the two quadrants corresponding to the braking conditions); typical operating points shall be selected in each quadrant, such as low torque and low speed, high torque and high speed, low torque and high speed, etc., to ensure the effectiveness of the safety mechanism;
- c) Testing shall be carried out by injecting faults. The safety thresholds for unexpected excessive output braking torque caused by injected faults shall include at least three types: below the safety threshold, reaching the safety threshold, above the safety threshold;
- d) The test shall monitor the process of the drive motor system entering a safe state (such as safety threshold, time, state switching, alarm information);

- a) All equipment, that affects the function of the test object and is related to the test results, shall be in normal operation;
- b) The test shall be based on the operating mode specified in 7.7.2; the selected test operating point shall make the drive motor system in a non-braking and stationary working state;
- c) Testing shall be carried out by injecting faults. The safety thresholds of unexpected output braking torque, as caused by injected faults, shall include at least three types: below the safety threshold, reaching the safety threshold, above the safety threshold;
- d) The test shall monitor the process of the drive motor system entering a safe state (such as safety threshold, time, state switching, alarm information);
- e) The test shall monitor the conditions under which the drive motor system exits the safe state.

8.2.7.4 Test end conditions

When any of the following conditions are met, the test in the simulation environment ends:

- a) The test object enters the safe state within the fault tolerance time interval and does not exit the safe state accidentally;
- b) The test object does not enter a safe state within the fault tolerance time interval;
- c) The test object fails to send the correct alarm message;
- d) The test object enters the safe state within the fault tolerance time interval and exits the safe state unexpectedly.

8.2.7.5 Test passing criteria

The test passing criteria shall meet the following conditions at the same time:

- a) The test object can enter the safe state after injecting a fault and does not exit the safe state accidentally, meanwhile the time interval -- from the injected fault to entering the safe state -- shall be less than or equal to the fault tolerance time interval requirement;
- b) The torque of the test object, when it enters the safe state, meets the safety threshold required by the design;
- c) The test object issues the correct fault alarm message.

This is an excerpt of the PDF (Some pages are marked off intentionally)

Full-copy PDF can be purchased from 1 of 2 websites:

1. https://www.ChineseStandard.us

- SEARCH the standard ID, such as GB 4943.1-2022.
- Select your country (currency), for example: USA (USD); Germany (Euro).
- Full-copy of PDF (text-editable, true-PDF) can be downloaded in 9 seconds.
- Tax invoice can be downloaded in 9 seconds.
- Receiving emails in 9 seconds (with download links).

2. https://www.ChineseStandard.net

- SEARCH the standard ID, such as GB 4943.1-2022.
- Add to cart. Only accept USD (other currencies https://www.ChineseStandard.us).
- Full-copy of PDF (text-editable, true-PDF) can be downloaded in 9 seconds.
- Receiving emails in 9 seconds (with PDFs attached, invoice and download links).

Translated by: Field Test Asia Pte. Ltd. (Incorporated & taxed in Singapore. Tax ID: 201302277C)

About Us (Goodwill, Policies, Fair Trading...): https://www.chinesestandard.net/AboutUs.aspx

Contact: Wayne Zheng, Sales@ChineseStandard.net

Linkin: https://www.linkedin.com/in/waynezhengwenrui/

----- The End -----