Translated English of Chinese Standard: GB5009.240-2023

<u>www.ChineseStandard.net</u> → Buy True-PDF → Auto-delivery.

Sales@ChineseStandard.net

GB

NATIONAL STANDARD OF THE PEOPLE'S REPUBLIC OF CHINA

GB 5009.240-2023

National Food Safety Standard - Determination of Fumonisin in Foods

食品安全国家标准 食品中伏马菌素的测定

Issued on: September 6, 2023 Implemented on: March 6, 2024

Issued by: National Health Commission of the People's Republic of China; State Administration for Market Regulation.

Table of Contents

Foreword	3
1 Scope	4
Method I - Immunoaffinity Column Purification - Post-column Derivatization performance Liquid Chromatography	•
2 Principle	4
3 Reagents and Materials	4
4 Instruments and Equipment	7
5 Analytical Procedures	7
6 Expression of Analysis Results	9
7 Precision	10
8 Others	10
Method II - High-performance Liquid Chromatography - Tandem Mass Spec	trometry
9 Principle	
10 Reagents and Materials	
11 Instruments and Equipment	
12 Analytical Procedures	14
13 Expression of Analysis Results	18
14 Precision	19
15 Others	19
Method III - Immunoaffinity Column Purification - Pre-column Derivatization performance Liquid Chromatography	_
16 Principle	19
17 Reagents and Materials	19
18 Instruments and Equipment	22
19 Analytical Procedures	22
20 Expression of Analysis Results	25
21 Precision	25
22 Others	25
Appendix A Post-column Derivatization - High-performance Liquid Chromato	ogram27
Appendix B MRM Mass Chromatogram	28
Appendix C Pre-column Derivatization - High-performance Liquid Chromato	
Appendix D Column Capacity and Column Recovery Verification Methods	32

National Food Safety Standard - Determination of Fumonisin in Foods

1 Scope

This Standard specifies the immunoaffinity column purification - post-column derivatization high-performance liquid chromatography, high-performance liquid chromatography - tandem mass spectrometry and immunoaffinity column purification - pre-column derivatization high-performance liquid chromatography for the determination of fumonisin in foods.

This Standard is applicable to the determination of fumonisin B_1 , fumonisin B_2 and fumonisin B_3 (hereinafter referred to as FB_1 , FB_2 and FB_3) in cereals and products, cereal supplementary foods for infants and young children, and vegetable oils.

Method I - Immunoaffinity Column Purification - Postcolumn Derivatization High-performance Liquid Chromatography

2 Principle

The specimen is extracted, purified by an immunoaffinity column, separated by C₁₈ reversed-phase chromatography column, derivatized by o-phthalaldehyde, detected by fluorescence detector, and quantified by the external standard method.

3 Reagents and Materials

Unless it is otherwise specified, the reagents used in this Method are all analytically pure, and the water is Grade-1 water specified in GB/T 6682.

3.1 Reagents

- **3.1.1** Methanol (CH₃OH): chromatographically pure.
- **3.1.2** Acetonitrile (CH₃CN): chromatographically pure.
- **3.1.3** Formic acid (HCOOH): chromatographically pure.
- 3.1.4 Acetic acid (CH₃COOH).
- 3.1.5 Sodium hydroxide (NaOH).

- **3.1.6** Sodium chloride (NaCl).
- **3.1.7** Disodium hydrogen phosphate (Na₂HPO₄).
- **3.1.8** Potassium dihydrogen phosphate (KH₂PO₄).
- 3.1.9 Potassium chloride (KCl).
- **3.1.10** Borax (Na₂B₄O₇ 10H₂O).
- **3.1.11** 2-mercaptoethanol (C₂H₆OS).
- **3.1.12** o-phthalaldehyde (C₈H₆O, OPA).
- 3.1.13 Tween-20 (C₅₈H₁₁₄O₂₆).
- 3.1.14 Hydrochloric acid (HCl).

3.2 Preparation of Reagents

- **3.2.1** Formic acid water solution (0.1%): accurately transfer-take 1 mL of formic acid, use water to dilute to 1,000 mL and evenly mix it.
- **3.2.2** Acetonitrile water solution (50 + 50): respectively measure-take 500 mL of acetonitrile and 500 mL of water, and evenly mix them.
- **3.2.3** Acetonitrile water solution (20 + 80): respectively measure-take 20 mL of acetonitrile and 80 mL of water, and evenly mix them.
- **3.2.4** Methanol acetic acid solution (98 + 2): accurately transfer-take 2 mL of acetic acid, use methanol to dilute to 100 mL and evenly mix it.
- **3.2.5** Sodium hydroxide solution (2 mol/L): accurately weigh-take 8.0 g of sodium hydroxide, add 50 mL of water to dissolve it; after cooling, use water to dilute it to 100 mL and evenly mix it.
- **3.2.6** Phosphate buffer solution (PBS): weigh-take 8.0 g of sodium chloride, 1.2 g of disodium hydrogen phosphate, 0.2 g of potassium dihydrogen phosphate and 0.2 g of potassium chloride; use 980 mL of water to dissolve it, use hydrochloric acid to adjust pH to 7.4, use water to dilute to 1,000 mL and evenly mix it.
- **3.2.7** Tween-20/PBS solution (0.1%): weigh-take 1.0 g of Tween-20, add phosphate buffer solution, dilute to 1,000 mL and evenly mix it.
- **3.2.8** Borax solution (0.05 mol/L, pH 10.5): weigh-take 19.1 g of borax, dissolve it in 980 mL of water, use sodium hydroxide solution to adjust pH to 10.5, use water to dilute to 1,000 mL and evenly mix it.
- 3.2.9 Derivatization solution: weigh-take 0.5 g of o-phthalaldehyde, dissolve it in 20 mL of

methanol, use borax solution (0.05 mol/L, pH 10.5) to dilute to 500 mL, add 500 μ L of 2-mercaptoethanol and evenly mix it. After filtration, put it into a brown bottle; store it at room temperature away from light. It shall remain valid for 1 week.

3.3 Reference Materials

- **3.3.1** Fumonisin B_1 ($C_{34}H_{59}NO_{15}$, FB_1 , CAS No.: 116355-83-0), purity $\geq 95\%$, or a standard substance certified by the state and awarded a standard substance certificate.
- **3.3.2** Fumonisin B₂ ($C_{34}H_{59}NO_{14}$, FB₂, CAS No.: 116355-84-1), purity \geq 95%, or a standard substance certified by the state and awarded a standard substance certificate.
- **3.3.3** Fumonisin B₃ ($C_{34}H_{59}NO_{14}$, FB₃, CAS No.: 136379-59-4), purity $\geq 95\%$, or a standard substance certified by the state and awarded a standard substance certificate.

3.4 Preparation of Standard Solutions

- 3.4.1 Standard stock solutions (100 μ g/mL): respectively and accurately weigh-take 10 mg (accurate to 0.01 mg) of FB₁, FB₂ and FB₃ into small beakers, use acetonitrile water solution (50 + 50) to dissolve them, and respectively transfer to 100 mL volumetric flasks. Use acetonitrile water solution (50 + 50) to reach a constant volume to the scale. Store them at –18 °C away from light. They shall remain valid for 6 months.
- 3.4.2 Mixed standard stock solution: accurately transfer-take 1.0 mL of FB₁ standard stock solution, 0.5 mL of FB₂ standard stock solution and 0.5 mL of FB₃ standard stock solution into the same 10 mL volumetric flask; add acetonitrile water solution (50 + 50) to dilute to the scale. The mass concentration of FB₁ is 10 μ g/mL, and the mass concentration of FB₂ and FB₃ is 5 μ g/mL. Store it at -18 °C away from light. It shall remain valid for 6 months.
- 3.4.3 Mixed standard working solution: accurately transfer-take 1.0 mL of the mixed standard stock solution into a 10.0 mL volumetric flask, add acetonitrile water solution (50 + 50) to dilute it and reach a constant volume to the scale. The mass concentration of FB₁ is 1 μ g/mL, and the mass concentration of FB₂ and FB₃ is 0.5 μ g/mL. Store it at 4 °C away from light. It shall remain valid for 6 months.
- **3.4.4** Mixed standard series of working solutions: accurately transfer-take the mixed standard working solution, use acetonitrile water solution (20 + 80) to dilute it, and prepare mixed standard series of working solutions respectively with a FB₁ mass concentration of 20.0 ng/mL, 80.0 ng/mL, 160 ng/mL, 240 ng/mL, 320 ng/mL, 400 ng/mL and 480 ng/mL, and a FB₂ and FB₃ mass concentration of 10.0 ng/mL, 40.0 ng/mL, 80.0 ng/mL, 120 ng/mL, 160 ng/mL, 200 ng/mL and 240 ng/mL. Prepare them right before use.

3.5 Materials

3.5.1 Immunoaffinity column (see Appendix D for column capacity and column recovery verification methods).

NOTE: before use, the column capacity and column recovery rate of each batch of affinity columns

5.2.2 Vegetable oils

The extraction of vegetable oils shall be performed in accordance with the steps in 5.2.1. The extracting solution is the lower layer.

5.3 Specimen Purification

5.3.1 Cereal supplementary foods for infants and young children

Accurately transfer-take 5.0 mL of the extracting solution, add 45.0 mL of Tween-20/PBS solution for dilution and evenly mix it. At 4,000 r/min, centrifuge it for 10 minutes, take the supernatant and pass it all through the immunoaffinity column, and control the flow rate to 1 mL/min ~ 2 mL/min. Then, use 10 mL of PBS buffer solution and 10 mL of water to successively rinse the immunoaffinity column. Then, use 3 mL of methanol - acetic acid solution to elute the immunoaffinity column in three times; collect and combine the eluent. At 55 °C, use nitrogen to blow-dry it; add 1 mL of acetonitrile - water solution (20 + 80) to dissolve the residue and vortex for 30 s. After passing it through a microporous filter membrane, collect it in a sampling bottle and reserve it for testing.

5.3.2 Cereals and products, and vegetable oils

Accurately transfer-take 0.5 mL of the extracting solution, add 4.5 mL of Tween-20/PBS solution for dilution and evenly mix it. At 4,000 r/min, centrifuge it for 10 minutes, take the supernatant and pass it all through the immunoaffinity column, and control the flow rate to 1 mL/min ~ 2 mL/min. Then, use 10 mL of PBS buffer solution and 10 mL of water to successively rinse the immunoaffinity column. Then, use 3 mL of methanol - acetic acid solution to elute the immunoaffinity column in three times; collect and combine the eluent. At 55 °C, use nitrogen to blow-dry it; add 1 mL of acetonitrile - water solution (20 + 80) to dissolve the residue and vortex for 30 s. After passing it through a microporous filter membrane, collect it in a sampling bottle and reserve it for testing.

NOTE: since the immunoaffinity column operating procedures provided by different manufacturers may be different, during actual operation, please refer to the operating instructions and procedures provided by the manufacturer.

5.4 Reference Conditions of Instrument

- **5.4.1** Chromatographic column: C_{18} , particle size 5 μ m, 4.6×250 mm, or equivalent.
- **5.4.2** Detection wavelength: excitation wavelength 335 nm; emission wavelength 440 nm.
- **5.4.3** Mobile phase: A: formic acid water solution (0.1%); B: methanol. Gradient elution. The elution procedure is shown in Table 1.
- **5.4.4** Mobile phase flow rate: 0.8 mL/min.
- **5.4.5** Derivative solution flow rate: 0.4 mL/min.

10.5 Preparation of Isotope Internal Standard Solution

10.5.1 Mixed isotope standard stock solution: accurately transfer-take 1 mL of $^{13}C_{34}$ -FB₁ (25 µg/mL), $^{13}C_{34}$ -FB₂ (10 µg/mL) and $^{13}C_{34}$ -FB₃ (10 µg/mL) into the same 10 mL volumetric flask. Add acetonitrile - water solution (50 + 50) to dilute it and reach a constant volume to the scale. The mass concentration of $^{13}C_{34}$ -FB₁ is 2.5 µg/mL, and the mass concentration of $^{13}C_{34}$ -FB₂ and $^{13}C_{34}$ -FB₃ is respectively 1 µg/mL. Store it at -18 °C away from light. It shall remain valid for 6 months.

10.5.2 Mixed isotope standard working solution: accurately transfer-take 1.0 mL of the mixed isotope standard stock solution into a 10 mL volumetric flask, add acetonitrile - water solution (50 + 50) to dilute it and reach a constant volume to the scale. The mass concentration of ${}^{13}C_{34}$ -FB₁ is 250 ng/mL, and the mass concentration of ${}^{13}C_{34}$ -FB₂ and ${}^{13}C_{34}$ -FB₃ is respectively 100 ng/mL. Store it at 4 °C away from light. It shall remain valid for 6 months.

10.6 Preparation of Mixed Standard Series of Working Solutions

Accurately transfer-take the mixed standard working solution, use acetonitrile - water solution (20+80) to dilute it, and add the mixed isotope standard working solution. Thus, mixed standard series of working solutions with a FB₁ mass concentration of 20.0 ng/mL, 80.0 ng/mL, 160 ng/mL, 240 ng/mL, 320 ng/mL, 400 ng/mL and 480 ng/mL, and a FB₂ and FB₃ mass concentration of 10.0 ng/mL, 40.0 ng/mL, 80.0 ng/mL, 120 ng/mL, 160 ng/mL, 200 ng/mL and 240 ng/mL are prepared. In each standard working solution, the mass concentration of 13C₃₄-FB₁, 13C₃₄-FB₂ and 13C₃₄-FB₃ is respectively 50.0 ng/mL, 20.0 ng/mL and 20.0 ng/mL. Prepare them right before use.

10.7 Materials

10.7.1 Immunoaffinity column (see Appendix D for column capacity and column recovery verification methods).

NOTE: before use, the column capacity and column recovery rate of each batch of affinity columns need to be verified.

- **10.7.2** Strong anion exchange solid-phase extraction column (6 mL, 500 mg).
- **10.7.3** Microporous filter membrane: 0.22 μm, organic type.

11 Instruments and Equipment

- **11.1** High-performance liquid chromatograph tandem mass spectrometer: equipped with electrospray ion source.
- 11.2 Balance: with a division value of 0.01 g and 0.01 mg.
- 11.3 Homogenizer: with a rotation speed $\geq 2,000$ r/min.

11.4 Oscillator (with a rotation speed $\geq 1,000 \text{ r/min}$) or ultrasonic extraction instrument (with a power $\geq 500 \text{ W}$).

11.5 Centrifuge: with a rotation speed $\geq 4,000$ r/min.

11.6 Nitrogen blower.

12 Analytical Procedures

12.1 Specimen Preparation

For cereals and products, cereal supplementary foods for infants and young children, the sampling size shall be not lower than 1 kg; when the mass of sample is less than 1 kg, all specimens shall be taken. Use a high-speed pulverizer to pulverize it, and the fineness of pulverization shall be less than 1 mm. After evenly mix it, store in a clean container, seal and store at 4 °C away from light.

For vegetable oils, the sampling size shall be not lower than 1 kg; when the mass of sample is less than 1 kg, all specimens shall be taken. After evenly mix it, store in a clean container, seal and store at 4 °C away from light.

During the specimen preparation, sample contamination or changes in fumonisin content shall be prevented.

12.2 Specimen Extraction

12.2.1 Cereals and products, cereal supplementary foods for infants and young children

Accurately weigh-take 20 g (accurate to 0.01 g) of specimen into a 250 mL conical flask, accurately add 100 mL of acetonitrile - water (50 + 50) extracting solution, conduct ultrasonic or oscillating extraction for 20 minutes, transfer 20 mL of the extracting solution into a 50 mL centrifuge tube. At 4,000 r/min, centrifuge it for 5 minutes and reserve it for purification.

12.2.2 Vegetable oils

The extraction of vegetable oils shall be the same as 12.2.1. The extracting solution is the lower layer.

12.3 Specimen Purification

12.3.1 Immunoaffinity column purification

12.3.1.1 Cereal supplementary foods for infants and young children

Accurately transfer-take 5.0 mL of the extracting solution, add 200 μ L of the mixed isotope standard working solution and 45.0 mL of Tween-20/PBS solution for dilution, evenly mix it. At 4,000 r/min, centrifuge it for 10 minutes, take all the supernatant and pass it through the

immunoaffinity column, and control the flow rate to 1 mL/min \sim 2 mL/min. Then, use 10 mL of PBS buffer solution and 10 mL of water to successively rinse the immunoaffinity column. Then, use 3 mL of methanol - acetic acid solution (98 + 2) to elute the immunoaffinity column in three times; combine the eluent. At 55 °C, use nitrogen to blow-dry it; add 1 mL of acetonitrile - water solution (20 + 80) to dissolve the residue and vortex for 30 s. After passing it through a microporous filter membrane, collect it in a sampling bottle and reserve it for testing.

12.3.1.2 Cereals and products, and vegetable oils

Accurately transfer-take 0.5 mL of the extracting solution, add 200 μ L of the mixed isotope standard working solution and 4.5 mL of Tween-20/PBS solution for dilution and evenly mix it. At 4,000 r/min, centrifuge it for 10 minutes, take all the supernatant and pass it through the immunoaffinity column, and control the flow rate to 1 mL/min \sim 2 mL/min. Then, use 10 mL of PBS buffer solution and 10 mL of water to successively rinse the immunoaffinity column. Then, use 3 mL of methanol - acetic acid solution to elute the immunoaffinity column in three times; collect and combine the eluent. At 55 °C, use nitrogen to blow-dry it; add 1 mL of acetonitrile - water solution (20 + 80) to dissolve the residue and vortex for 30 s. After passing it through a microporous filter membrane, collect it in a sampling bottle and reserve it for testing.

12.3.2 Strong anion exchange solid-phase extraction purification column

12.3.2.1 Cereal supplementary foods for infants and young children

Accurately transfer-take 5.0 mL of the extracting solution, add 200 μ L of the mixed isotope standard working solution and 15.0 mL of methanol - water solution (60 + 20) for dilution, and evenly mix it. At 4,000 r/min, centrifuge it for 10 minutes. Take all the supernatant and pass it through a strong anion exchange solid-phase extraction column (before use, successively use 6.0 mL of methanol and 6.0 mL of water to activate it), and control the flow rate to 1 mL/min \sim 2 mL/min. Use 8 mL of methanol - water solution (60 + 20) and 3 mL of methanol to successively rinse it, and use 10 mL of methanol - acetic acid solution (99 + 1) to elute it; collect the eluent. At 55 °C, use nitrogen to blow-dry it. Add 1 mL of acetonitrile - water solution (20 + 80) to dissolve the residue and vortex for 30 s. After passing it through a microporous filter membrane, collect it in a sampling bottle and reserve it for testing.

12.3.2.2 Cereals and products, and vegetable oils

Accurately transfer-take 0.5 mL of the extracting solution, add 200 μ L of the mixed isotope standard working solution and 5.0 mL of methanol - water solution (60 + 20) for dilution, and evenly mix it. At 4,000 r/min, centrifuge it for 5 minutes. Take all the supernatant and pass it through a strong anion exchange solid-phase extraction column (before use, successively use 6.0 mL of methanol and 6.0 mL of water to activate it), and control the flow rate to 1 mL/min \sim 2 mL/min. Use 8 mL of methanol - water solution (60 + 20) and 3 mL of methanol to successively rinse it, and use 10 mL of methanol - acetic acid solution (99 + 1) to elute it; collect the eluent. At 55 °C, use nitrogen to blow-dry it. Add 1 mL of acetonitrile - water solution (20 + 80) to dissolve the residue and vortex for 30 s. After passing it through a microporous filter membrane, collect it in a sampling bottle and reserve it for testing.

hydrogen phosphate, 0.2 g of potassium dihydrogen phosphate and 0.2 g of potassium chloride; use 980 mL of water to dissolve it, then, use hydrochloric acid to adjust pH to 7.4. Finally, use water to dilute to 1,000 mL and evenly mix it.

- **17.2.7** Tween-20/PBS solution (0.1%): weigh-take 1.0 g of Tween-20, add phosphate buffer solution, dilute to 1,000 mL and evenly mix it.
- **17.2.8** Borax solution (0.1 mol/L): weigh-take 3.8 g of borax, use water to dissolve it and dilute to 100 mL, and evenly mix it.
- 17.2.9 Derivatization solution: weigh-take 25 mg of o-phthalaldehyde, dissolve it in 1 mL of methanol, use borax solution (0.1 mol/L) to dilute to 50 mL, add 50 μ L of 2-mercaptoethanol and evenly mix it. After filtration, put it into a brown bottle; store it at room temperature away from light. It shall remain valid for 1 week.

17.3 Reference Materials

- 17.3.1 Fumonisin B_1 ($C_{34}H_{59}NO_{15}$, FB_1 , CAS No.: 116355-83-0), purity \geq 95%, or a standard substance certified by the state and awarded a standard substance certificate.
- **17.3.2** Fumonisin B₂ ($C_{34}H_{59}NO_{14}$, FB₂, CAS No.: 116355-84-1), purity \geq 95%, or a standard substance certified by the state and awarded a standard substance certificate.
- 17.3.3 Fumonisin B₃ ($C_{34}H_{59}NO_{14}$, FB₃, CAS No.: 136379-59-4), purity \geq 95%, or a standard substance certified by the state and awarded a standard substance certificate.

17.4 Preparation of Standard Solutions

- 17.4.1 Standard stock solutions ($100 \mu g/mL$): respectively and accurately weigh-take 10 mg (accurate to 0.01 mg) of FB₁, FB₂ and FB₃ into small beakers, use acetonitrile water solution (50 + 50) to dissolve them, and respectively transfer to 100 mL volumetric flasks. Use acetonitrile water solution (50 + 50) to reach a constant volume to the scale. Store them at -18 °C away from light. They shall remain valid for 6 months.
- 17.4.2 Mixed standard stock solution: accurately transfer-take 1.0 mL of FB₁ standard stock solution, 0.5 mL of FB₂ standard stock solution and 0.5 mL of FB₃ standard stock solution into the same 10 mL volumetric flask; add acetonitrile water solution (50 + 50) to dilute to the scale. The mass concentration of FB₁ is 10 μ g/mL, and the mass concentration of FB₂ and FB₃ is 5 μ g/mL. Store it at -18 °C away from light. It shall remain valid for 6 months.
- 17.4.3 Mixed standard working solution: accurately transfer-take 1.0 mL of the mixed standard stock solution into a 10.0 mL volumetric flask, add acetonitrile water solution (50 + 50) to dilute it and reach a constant volume to the scale. The mass concentration of FB₁ is 1.0 μ g/mL, and the mass concentration of FB₂ and FB₃ is 0.5 μ g/mL. Store it at 4 °C away from light. It shall remain valid for 6 months.
- 17.4.4 Mixed standard series of working solutions: accurately transfer-take the mixed standard

During the specimen preparation, sample contamination or changes in fumonisin content shall be prevented.

19.2 Specimen Extraction

19.2.1 Cereals and products, cereal supplementary foods for infants and young children

Accurately weigh-take 20 g (accurate to 0.01 g) of specimen into a 250 mL conical flask, accurately add 100 mL of acetonitrile - water (50 + 50) extracting solution, conduct ultrasonic or oscillating extraction for 20 minutes, transfer 20 mL of the extracting solution into a 50 mL centrifuge tube. At 4,000 r/min, centrifuge it for 10 minutes and reserve it for purification.

19.2.2 Vegetable oils

The extraction of vegetable oils shall be performed in accordance with the steps in 19.2.1. The extracting solution is the lower layer.

19.3 Specimen Purification

19.3.1 Cereal supplementary foods for infants and young children

Accurately transfer-take 5.0 mL of the extracting solution, add 45.0 mL of Tween-20/PBS solution for dilution and evenly mix it. At 4,000 r/min, centrifuge it for 10 minutes, take all the supernatant and pass it through the immunoaffinity column, and control the flow rate to 1 mL/min \sim 2 mL/min. Then, use 10 mL of PBS buffer solution and 10 mL of water to successively rinse the immunoaffinity column. Then, use 3 mL of methanol - acetic acid solution (98 + 2) to elute the immunoaffinity column in three times; collect the eluent. At 55 °C, use nitrogen to blow-dry it; add 1 mL of acetonitrile - water solution (20 + 80) to dissolve the residue and vortex for 30 s. After passing it through a microporous filter membrane, collect it in a sampling bottle and reserve it for testing.

19.3.2 Cereals and products, and vegetable oils

Accurately transfer-take 0.5 mL of the extracting solution, add 4.5 mL of Tween-20/PBS solution for dilution and evenly mix it. At 4,000 r/min, centrifuge it for 10 minutes, take all the supernatant and pass it through the immunoaffinity column, and control the flow rate to 1 mL/min ~ 2 mL/min. Then, use 10 mL of PBS buffer solution and 10 mL of water to successively rinse the immunoaffinity column. Then, use 3 mL of methanol - acetic acid solution (98 + 2) to elute the immunoaffinity column in three times; collect the eluent. At 55 °C, use nitrogen to blow-dry it; add 1 mL of acetonitrile - water solution (20 + 80) to dissolve the residue and vortex for 30 s. After passing it through a microporous filter membrane, collect it in a sampling bottle and reserve it for testing.

NOTE: since the immunoaffinity column operating procedures provided by different manufacturers may be different, during actual operation, please refer to the operating instructions and procedures provided by the manufacturer.

This is an excerpt of the PDF (Some pages are marked off intentionally)

Full-copy PDF can be purchased from 1 of 2 websites:

1. https://www.ChineseStandard.us

- SEARCH the standard ID, such as GB 4943.1-2022.
- Select your country (currency), for example: USA (USD); Germany (Euro).
- Full-copy of PDF (text-editable, true-PDF) can be downloaded in 9 seconds.
- Tax invoice can be downloaded in 9 seconds.
- Receiving emails in 9 seconds (with download links).

2. https://www.ChineseStandard.net

- SEARCH the standard ID, such as GB 4943.1-2022.
- Add to cart. Only accept USD (other currencies https://www.ChineseStandard.us).
- Full-copy of PDF (text-editable, true-PDF) can be downloaded in 9 seconds.
- Receiving emails in 9 seconds (with PDFs attached, invoice and download links).

Translated by: Field Test Asia Pte. Ltd. (Incorporated & taxed in Singapore. Tax ID: 201302277C)

About Us (Goodwill, Policies, Fair Trading...): https://www.chinesestandard.net/AboutUs.aspx

Contact: Wayne Zheng, Sales@ChineseStandard.net

Linkin: https://www.linkedin.com/in/waynezhengwenrui/

---- The End -----