Translated English of Chinese Standard: GB30717-2019

<u>www.ChineseStandard.net</u> → Buy True-PDF → Auto-conveyor.

<u>Sales@ChineseStandard.net</u>

GB

NATIONAL STANDARD OF THE PEOPLE'S REPUBLIC OF CHINA

ICS 91.140.70

Q 31

GB 30717-2019

Replacing GB 30717-2014

Minimum allowable values of water efficiency and water efficiency grades for squatting pans

蹲便器水效限定值及水效等级

Issued on: December 31, 2019 Implemented on: July 01, 2020

Issued by: State Administration for Market Regulation;
Standardization Administration of PRC.

Table of Contents

Foreword	3
1 Scope	5
2 Normative references	5
3 Terms and definitions	5
4 Technical requirements	6
5 Test method	7
Appendix A (Normative) Test system of flushing function and water cons	umption
of squatting pan	13
Appendix B (Normative) Schematic diagram of artificial test object for di	scharge
function test of squatting pan	16

Minimum allowable values of water efficiency and water efficiency grades for squatting pans

1 Scope

This standard specifies the water efficiency limit value, water saving evaluation value, water efficiency grade, flushing function requirements, test methods of squatting pans.

This standard is applicable to the water efficiency evaluation of squatting pans (not including infant's type), which are installed on the cold water supply pipelines within buildings AND have the hydrostatic pressure of the water supply not greater than 0.6 MPa.

2 Normative references

The following documents are essential to the application of this document. For the dated documents, only the versions with the dates indicated are applicable to this document; for the undated documents, only the latest version (including all the amendments) is applicable to this standard.

GB/T 9195 Classification and terms of building and sanitary ceramics

3 Terms and definitions

The terms and definitions as defined in GB/T 9195, as well as the following terms and definitions, apply to this document.

3.1

Average water consumption of squatting pans

The water consumption of the squatting pan, which is is measured and calculated according to the test method and calculation formula, as stipulated by the standard.

3.2

Minimum allowable values of water efficiency for squatting pans

Under the test conditions specified in the standard, the maximum water consumption, which is allowed by the squatting pan.

3.3

Evaluating values of water conservation for squatting pans

Under the test conditions specified in the standard, the maximum water consumption, which is allowed by the water-saving squatting pan.

Note: Evaluating values of water conservation is a requirement for evaluating watersaving squatting pans.

4 Technical requirements

4.1 Basic requirements

The squatting pan shall meet the requirements of the expressly implemented standards; meanwhile it shall be matched with the corresponding flushing device.

4.2 Flushing function requirements

4.2.1 Washing function

Carry out the cleaning function test according to 5.4.1; the total length of the accumulated residual ink line, after each flushing, is not more than 50 mm; the length of each residual ink line is not more than 13 mm.

4.2.2 Discharge function

Carry out the discharge function test, according to the provisions of 5.4.2; make 3 measurements; at least 10 test objects can be flushed out of the sewage outlet.

4.2.3 Splash resistance

According to the provisions of 5.4.3, carry out the anti-splash test. No water splashes on the template, excluding the sputtered water droplets or water mist, which has a diameter of less than 8 mm.

4.2.4 Sewage replacement function

Conduct the sewage replacement test, in accordance with the provisions of 5.4.4. The dilution rate of the single flush squatting pan shall not be less than 100. For the double flush squatting pan, it only performs the half flush sewage replacement test; the dilution rate shall not be less than 25.

4.2.5 Water seal depth

function tests, under the condition of the flushing device and the water supply system when the test water consumption is maintained, they are performed under the minimum test pressure as specified in Table 2, except for the antisplash test, which is carried out under the maximum pressure as specified in Table 2.

5.1.4 The squatting pan, which does not have integral trap, shall be tested for flushing function, according to the provisions of 5.4.2.

5.2 Standardized debugging procedures for squatting pan test system

5.2.1 Standardized debugging procedures for the cistern squatting pan test system

The standardized debugging procedure of the water supply system, for the cistern squatting pan test, shall meet the requirements of Figure A.1. The specific procedures are as follows:

- a) Adjust the water supply source 1 to a static pressure of (0.140 ± 0.007) MPa:
- b) Open the on-off control valve 5; adjust the regulating valve 3. Under the dynamic pressure of (0.055 ± 0.004) MPa, the water flow measured by the flow meter 2 is (11.4 ± 0.5) L/min;
- c) Keep the on-off control valve 5 in a fully open state, during debugging. After the debugging is completed, close the on-off control valve 5;
- d) Install the sample to be tested, after debugging.

5.2.2 Standardized debugging procedures for flush valve squatting pan test system

The standard debugging procedure of the water supply system, for the flush valve squatting pan test, shall meet the requirements of Figure A.2. The specific procedures are as follows:

- a) Adjust the water supply source 1 to a static pressure of (0.24 ± 0.01) MPa;
- b) Install the flush valve, which is provided together with the squatting pan; the water supply switch is in the fully open state, so that the water outlet of the water supply system is open to the atmosphere;
- c) Open the on-off control valve 5; adjust the regulating valve 3, so that the peak flow rate reaches (95 \pm 4) L/min. If the manufacturer states that the flush valve does not reach the specified minimum flow rate, the flush valve will be adjusted to the fully open state;

- V₂ The arithmetic average of the half-flush water consumption, in liters (L);
- V₀ The maximum limit value of the full-flush water consumption, in liters (L).

5.4 Flushing function test

5.4.1 Washing function test

Wipe the cleaned surface clean. Use commercially available ink to draw a continuous thin ink line, 30 mm below the squatting pan's flushing water ring. Start the flushing device. Make observation. Measure and record the length of the residual ink line. Test 3 times continuously. Report the average value of the total length of the residual ink line, in the 3 tests, accurate to 1 mm.

5.4.2 Discharge function test

Prepare 4 test objects, according to the provisions of Appendix B, as shown in Figure B.1. Place the 3 test objects side by side, in the flushing direction, in the middle of the flushing surface of the squatting pan. Then place the 4th test object in a cross shape, laterally on the middle position above the 3 test objects, so as to form a state of three vertical and one horizontal, as shown in Figure B.2.

After the test object is placed, start flushing immediately; observe and record the number of the test object discharged out of the squatting pan; test 3 times; report the number of times that the test object is discharged out of the squatting pan.

For squatting pan products, which do not have integral traps, it shall connect an external trap, which has a diameter of 110 mm, a water seal depth of 50 mm, a drop of 500 mm/300 mm, before carrying out the test.

5.4.3 Splash resistance test

Use 3 pads, each of which has a thickness of 25 mm, to support a transparent template of at least 600 mm × 500 mm on the surface of the squatting pan, so that there is a 25 mm gap, between it and the upper surface of the pan. Start the flushing device to flush; observe and record the number of water droplets, which have a diameter greater than 8 mm, on the template. Test 5 times; take the maximum value.

5.4.4 Sewage replacement test

Use tap water, at about 80 °C, to prepare a methylene blue solution, which has a concentration of 5 g/L.

Rinse the squatting pan clean, under the test conditions. After completing the normal water intake cycle, pour 30 mL of the staining solution into the squatting

pan's water seal. Stir it evenly. Take 5 mL of the solution from the water seal water to the container. According to the technical requirements of the corresponding product, add water to dilute it to 125 mL or 500 mL (standard dilution rate is 25 or 100). Mix well. Transfer to a colorimetric tube, as a standard solution, for later use.

Start the squatting pan's flushing device. After the flushing cycle is completed, put the diluent in the squatting pan into the colorimetric tube of the same specification, as the standard liquid; visually observe the color difference with the standard liquid;

If the color is darker than the standard solution, THEN, record the dilution rate as less than the standard dilution rate:

If the color is the same as the standard solution, THEN, record the dilution rate as equal to the standard dilution rate;

If the color is lighter than the standard solution, THEN, record the dilution rate as greater than the standard dilution rate.

5.4.5 Water seal depth

As shown in Figure B.3, add water to the squatting pan's trap, until there is overflow. After the overflow stops, use a sealing ruler or ruler or an effective instrument, to measure the vertical distance, from the surface of the water-sealed water to the lowest point of the upper surface of the waterway entrance. Take record.

This is an excerpt of the PDF (Some pages are marked off intentionally)

Full-copy PDF can be purchased from 1 of 2 websites:

1. https://www.ChineseStandard.us

- SEARCH the standard ID, such as GB 4943.1-2022.
- Select your country (currency), for example: USA (USD); Germany (Euro).
- Full-copy of PDF (text-editable, true-PDF) can be downloaded in 9 seconds.
- Tax invoice can be downloaded in 9 seconds.
- Receiving emails in 9 seconds (with download links).

2. https://www.ChineseStandard.net

- SEARCH the standard ID, such as GB 4943.1-2022.
- Add to cart. Only accept USD (other currencies https://www.ChineseStandard.us).
- Full-copy of PDF (text-editable, true-PDF) can be downloaded in 9 seconds.
- Receiving emails in 9 seconds (with PDFs attached, invoice and download links).

Translated by: Field Test Asia Pte. Ltd. (Incorporated & taxed in Singapore. Tax ID: 201302277C)

About Us (Goodwill, Policies, Fair Trading...): https://www.chinesestandard.net/AboutUs.aspx

Contact: Wayne Zheng, Sales@ChineseStandard.net

Linkin: https://www.linkedin.com/in/waynezhengwenrui/

----- The End -----