Translated English of Chinese Standard: DB12/356-2018

www.ChineseStandard.net → Buy True-PDF → Auto-delivery.

Sales@ChineseStandard.net

DB12

LOCAL STANDARD OF TIANJIN

ICS 13.060.30 Z 60

DB12/ 356-2018

Replacing DB12/ 356-2008

Integrated wastewater discharge standard

Issued on: January 30, 2018 Implemented on: February 01, 2018

Issued by: Tianjin Environmental Protection Bureau;

Market and Quality Supervision Management Committee of

Tianjin.

Table of Contents

Foreword	3
1 Scope	4
2 Normative references	4
3 Terms and definitions	10
4 Standard grading	11
5 Requirements for pollutant-discharge control	12
6 Pollutant monitoring requirements	16
7 Implementation and supervision	22

Integrated wastewater discharge standard

1 Application scope

This standard specifies the terms and definitions of water pollutant discharge, standard grading, pollutant discharge control requirements, pollutant monitoring requirements, implementation and supervision.

This standard is applicable to the discharge management of water pollutants in the existing pollutant discharge units [Translator note: "unit" refers to an organization / entity] of Tianjin, as well as the environmental impact assessment of construction projects, the design of environmental protection facilities of construction projects, the completion acceptance, the discharge management after commissioning.

This standard applies to the discharge of water pollutants permitted by law. The location of newly-established pollution sources and the management of existing sources in special protection areas shall be in accordance with the Laws of the People's Republic of China on the Prevention and Control of Water Pollution, the Law of the People's Republic of China on Marine Environmental Protection, the Law of the People's Republic of China on Environmental Impact Assessment, as well as other laws, regulations and provisions.

In accordance with the principle that the integrated discharge standards and industrial discharge standards are not cross-executed, where there are national or local industry water pollutant discharge standards, it shall implement the corresponding industrial water pollutant discharge standards in accordance with their scope of application. For other pollutant-discharge units, the water pollutant-discharge units shall implement this standard.

The water pollutant-discharge control requirements as specified in this standard are applicable to the discharge of water pollutants directly or indirectly by the pollutant-discharge unit outside its legal boundary.

2 Normative references

The following documents are essential to the application of this document. For the dated documents, only the versions with the dates indicated are applicable to this document; for the undated documents, only the latest version (including all the amendments) are applicable to this standard.

GB 6920 Water quality - determination of pH value - Glass electrode method

- GB 7466 Water quality Determination of total chromium
- GB 7467 Water quality Determination of chromium (6) 1.5 Diphenylcarbahydrazide spectrophotometric method
- GB 7475 Water quality Determination of copper, zinc, lead and cadmium Atomic absorption spectrometry
- GB 7484 Water quality Determination of fluoride Ion selective electrode method
- GB 7485 Water quality Determination of total arsenic Silver diethyldithiocarbamate spectrophotometric method
- GB 7494 Water quality Determination of anionic surfactants Methylene blue spectrophotometric method
- GB 8978 Integrated wastewater discharge standard
- GB 11889 Water quality Determination of aniline compounds-Spectrophotometric method with N-(1-naphthyl) ethylenediamine azo
- GB 11890 Water quality Determination of benzene and its analogies gas chromatographic method
- GB 11893 Water quality Determination of total phosphorus Ammonium molybdate spectrophotometric method
- GB 11901 Water quality Determination of suspended substance Gravimetric method
- GB 11902 Water quality Determination of selenium Diaminonaphthalene fluorometric method
- GB 11903 Water quality Determination of colority
- GB 11907 Water quality Determination of silver Flame atomic absorption spectrophotometric method
- GB 11911 Water quality Determination of iron and manganese Flame atomic absorption spectrometric method
- GB 11912 Water quality Determination of nickel Flame atomic absorption spectrometric method
- GB 13192 Water quality Determination of organic phosphorous pesticide in water Gas chromatography
- GB/T 14204 Water quality Determination of alkylmercury Gas

zymotechnics and filter membrane

HJ/T 399 Water quality - Determination of the chemical oxygen demand - Fast digestion spectrophotometric method

HJ 478 Water quality - Determination of polycyclic aromatic hydrocarbons by liquid-liquid extraction and solid-phase extraction high performance liquid chromatography

HJ 484 Water quality - Determination of cyanide volumetric and spectrophotometry method

HJ 488 Water quality - Determination of Fluoride - Fluorine reagents spectrophotometry

HJ 501 Water quality - Determination of total organic carbon - Combustion oxidation nondispersive infrared absorption method

HJ 503 Water quality - Determination of volatile phenolic compounds - 4-AAP spectrophotometric method

HJ 505 Water quality - Determination of biochemical oxygen demand after 5 days (BOD5) - Dilution and seeding method

HJ 535 Water quality - Determination of ammonia nitrogen - Nesslers reagent spectrophotometry

HJ 536 Water quality - Determination of ammonia nitrogen - Salicylic acid spectrophotometry

HJ 537 Water quality - Determination of ammonia nitrogen - Distillationneutralization titration

HJ 585 Water quality - Determination of free chlorine and total chlorine - Titrimetric method using N,N-diethyl-1,4-phenylenediamine

HJ 586 Water quality - Determination of free chlorine and total chlorine - Spectrophotometric method N,N-diethyl-1,4-phenylenediamine

HJ 591 Water quality - Determination of Pentachlorophenol by Gas Chromatography

HJ 592 Water quality - Determination of nitrobenzene-compounds by Gas chromatography

HJ 593 Water quality - Determination of phosphorus - Phosphomolybdenum blue spectrophotometric method

HJ 594 Water quality - Determination of the total amount of the developing

HJ 671 Water quality - Determination of total phosphorus - Flow injection analysis (FIA) and ammonium molybdate spectrophotometry

HJ 676 Water quality - Determination of phenolic compounds - Liquid-liquid extraction gas chromatography

HJ 686 Water quality - Determination of volatile organic compounds - Purge and trap/gas chromatography

HJ 694 Water quality - Determination of mercury, arsenic, selenium, bismuth and antimony - Atomic fluorescence spectrometry

HJ 699 Water quality - Determination of organochlorine pesticides and chlorobenzenes - Gas chromatography mass spectrometry

HJ 700 Water quality - Determination of 65 elements - Inductively coupled plasma mass spectrometry

HJ 716 Water quality - Determination of nitroaromatics - Gas chromatography mass spectrometry

HJ 744 Water quality - Determination of phenols compounds - Gas chromatography mass spectrometry

HJ 755 Water quality - Determination of total coliforms and fecal coliforms - Paper strip method

HJ 757 Water quality - Determination of chromium - Flame atomic absorption spectrometry

HJ 776 Water quality - Determination of 32 elements - Inductively coupled plasma optical emission spectrometry

HJ 806 Water quality - Determination of acrylonitrile and acrolein - Purge and trap / gas chromatography

HJ 810 Water quality - Determination of volatile organic compounds - Headspace / Gas chromatography mass spectrometry

HJ 811 Water quality - Determination of total selenium - 3,3'- Diaminobenzidine spectrophotometric method

HJ 822 Water quality - Determination of aniline compounds - Gas chromatography mass spectrometry

HJ 823 Water quality - Determination of cyanide - Flow injection analysis (FIA) and spectrophotometric method

HJ 824 Water quality - Determination of sulfide - Flow injection analysis (FIA)

Direct discharge

The behavior that pollutant-discharge units directly discharge water pollutants into environmental water bodies.

3.6

Indirect discharge

The behavior that pollutant discharge units discharge water pollutants into the public sewage treatment system.

3.7

Public sewage treatment plant

The enterprise or institute which collects wastewater through sewage pipelines (canals) and so on, provides waste water treatment services to more than two pollutant discharge units, and whose discharge can meet the requirements of relevant discharge standards, including urban sewage treatment plants of various scales and types, regional (including various industrial parks, development zones, industrial agglomeration zones) wastewater treatment plants and so on. Its wastewater treatment grade shall reach grade II or above.

3.7 [should be 3.8]

Industrial park

Various industrial parks, development zones, bonded zones, export processing zones, eco-industrial demonstration zones, industrial agglomeration zones, etc. which are approved by the State or Tianjin Municipality with clear geographical boundaries.

4 Standard grading

- **4.1** This standard is divided into three grades in accordance with different discharge destinations and different functions of wastewater, of which the grade I and grade II are direct discharge standards, the grade III is indirect discharge standard.
- **4.2** For the wastewater which is discharged into the water-body of category IV (inclusive) and above in GB 3838 and the water-body within its impoundment area, as well as the wastewater which is discharged into the category II and category III sea areas in GB 3097, it shall implement the grade I standard.
- 4.3 For the wastewater which is discharged into the water-body of the category

must not negotiate for discharging.

5.4 Other provisions

- **5.4.1** The base water-displacement of the unit-product from each industry shall implement the corresponding national and local standards.
- **5.4.2** In addition to the discharge limits as specified in this standard, the discharge of water pollutants shall also meet the control limits of total pollutant discharge which are approved or specified by the national or local environmental protection administrative department.

6 Pollutant monitoring requirements

- **6.1** For the sampling of wastewater as discharged from the pollutant discharge unit, it shall, in accordance with the types of the monitored pollutants, be performed at the specified monitoring location of pollutant discharge. The pollutant discharge unit shall follow the relevant requirements of the national technical specifications on pollution source monitoring to arrange the sampling port, it shall provide a permanent marking of pollutant discharge outlet at the monitoring position of pollutant discharge.
- **6.2** For the requirements of the installation of automatic pollutant discharge monitoring equipment, for new (rebuilding, extending) construction units and existing units, it shall be implemented in accordance with the relevant laws and the provisions of "Administrative measures for automatic monitoring of pollution sources".
- **6.3** The pollutant discharge unit shall monitor the discharge status and keep the original monitoring records in accordance with the requirements of relevant laws and regulations.
- **6.4** The frequency, sampling time, quality control and other requirements for monitoring the pollutant discharge shall be implemented in accordance with the provisions of the national and local relevant technical specifications on pollution source monitoring as well as the requirements of the environmental protection administrative department.
- **6.5** The concentration of water pollutants is determined by using the method standards listed in Table 3.
- **6.6** After this standard is issued-implemented, if there are new standards for methods monitoring the pollutants as listed in Table 3, then, such standards are also applicable to the determination of corresponding pollutants of this discharge standard.

29	Aniline	Spectrophotometric method with N-(1-naphthyl)	GB 11889
		ethylenediamine azo	HJ 822
30	Nitrobenzene	Gas chromatography	HJ 592
		Liquid-liquid extraction / solid phase extraction-gas	HJ 648
		chromatography	
		Gas chromatography-mass spectrometry	HJ 716
31	Anionic surfactant	Methylene blue spectrophotometry	GB 7494
		Flow injection-methylene blue spectrophotometry	HJ 826
32	Total copper	Atomic absorption spectrophotometry	GB 7475
		Inductively coupled plasma atomic emission spectrometry	HJ 776
		(ICP-AES)	
		Inductively coupled plasma mass spectrometry (ICP-MS)	HJ 700

Table 3 (continued)

	Table 3 (continued)		
No.	Control item	Determination method	Implemented
		Botomination motified	standard
33	Total zinc	Atomic absorption spectrophotometry	GB 7475
		Inductively coupled plasma atomic emission spectrometry	HJ 776
		(ICP-AES)	
		Inductively coupled plasma mass spectrometry (ICP-MS)	HJ 700
	T	Flame atomic absorption spectrometry	GB 11911
34		Inductively coupled plasma atomic emission spectrometry	HJ 776
34	Total manganese	(ICP-AES)	
		Inductively coupled plasma mass spectrometry (ICP-MS)	HJ 700
		160 coupler method	GB 8978-1996
35	Color developer	169 coupler method 169 coupler spectrophotometry (provisional)	Appendix D
			HJ 595
	Total amount of developer and oxide	lodine-starch colorimetry lodine-starch spectrophotometry (provisional)	GB 8978-1996
36			Appendix D
			HJ 594
	Elemental phosphorus	Phosphomolybdenum blue spectrophotometry Phosphorus molybdenum blue colorimetry	HJ 593
37			GB 8978-1996
			Appendix D
38	Organophosphorus	Gas chromatography	GB 13192
-	pesticides (in P)		
-	Dimethoate	Gas chromatography	GB 13192
40	Parathion	Gas chromatography	GB 13192
41	Methyl parathion	Gas chromatography	GB 13192
42	Malathion	Gas chromatography	GB 13192
	Pentachlorophenol and		
43	sodium	Gas chromatography	HJ 591
	pentachlorophenol (in		1.10.001
	pentachlorophenol)		

		Purge and trap/gas chromatography	HJ 686
		Headspace/gas chromatography-mass spectrometry	HJ 810
55	Chlorobenzene	Gas chromatography	HJ/T 74
		Gas chromatography	HJ 621
		Purge and trap/gas chromatography-mass spectrometry	HJ 639
		Headspace/gas chromatography-mass spectrometry	HJ 810
	1,2-dichlorobenzene	Gas chromatography	HJ 621
56		Purge and trap/gas chromatography-mass spectrometry	HJ 639
		Headspace/gas chromatography-mass spectrometry	HJ 810
		Gas chromatography	HJ 621
57	1,4-dichlorobenzene	Purge and trap/gas chromatography-mass spectrometry	HJ 639
		Headspace/gas chromatography-mass spectrometry	HJ 810
	Nitrochlorobenzene	Liquid-liquid extraction/solid phase extraction-gas	HJ 648
58		chromatography	
		Gas chromatography-mass spectrometry	HJ 716
	2,4- dinitrochlorobenzene	Liquid-liquid extraction/solid phase extraction-gas	HJ 648
59		chromatography	
		Gas chromatography-mass spectrometry	HJ 716
00	Phenol	Liquid-liquid extraction/gas chromatography	HJ 676
60		Gas chromatography-mass spectrometry	HJ 744
04	M-cresol	Liquid-liquid extraction/gas chromatography	HJ 676
61		Gas chromatography-mass spectrometry	HJ 744
00	2,4-dichlorophenol	Liquid-liquid extraction/gas chromatography	HJ 676
62		Gas chromatography-mass spectrometry	HJ 744

Table 3 (continued)

No.	Control item	Determination method	Implemented standard
63	2,4,6-trichlorophenol	Liquid-liquid extraction/gas chromatography	HJ 676
		Gas chromatography-mass spectrometry	HJ 744
64	Dibutyl phthalate	Liquid chromatography	HJ/T 72
65	Dioctyl phthalate	Liquid chromatography	HJ/T 72
66	Acrylonitrile	Purge and trap/gas chromatography	HJ 806
		Gas chromatography	HJ/T 73
67	Total selenium	2,3-Diaminonaphthalene fluorometric method	GB 11902
		Atomic fluorescence	HJ 694
		Inductively coupled plasma mass spectrometry (ICP-MS)	HJ 700
		3,3'-Diaminobenzidine spectrophotometry	HJ 811
68	Number of fecal	Manifold zymotechnics and filter membrane (trial)	HJ/T 347
68	coliforms	Paper strip method	HJ 755
69		Titrimetric method using N,N-diethyl-1,4-phenylenediamine	HJ 585
	Total chlorine	Spectrophotometric method using N,N-diethyl-1,4-	HJ 586
		phenylenediamine	

This is an excerpt of the PDF (Some pages are marked off intentionally)

Full-copy PDF can be purchased from 1 of 2 websites:

1. https://www.ChineseStandard.us

- SEARCH the standard ID, such as GB 4943.1-2022.
- Select your country (currency), for example: USA (USD); Germany (Euro).
- Full-copy of PDF (text-editable, true-PDF) can be downloaded in 9 seconds.
- Tax invoice can be downloaded in 9 seconds.
- Receiving emails in 9 seconds (with download links).

2. https://www.ChineseStandard.net

- SEARCH the standard ID, such as GB 4943.1-2022.
- Add to cart. Only accept USD (other currencies https://www.ChineseStandard.us).
- Full-copy of PDF (text-editable, true-PDF) can be downloaded in 9 seconds.
- Receiving emails in 9 seconds (with PDFs attached, invoice and download links).

Translated by: Field Test Asia Pte. Ltd. (Incorporated & taxed in Singapore. Tax ID: 201302277C)

About Us (Goodwill, Policies, Fair Trading...): https://www.chinesestandard.net/AboutUs.aspx

Contact: Wayne Zheng, Sales@ChineseStandard.net

Linkin: https://www.linkedin.com/in/waynezhengwenrui/

----- The End -----